
I tHKY AINU JUJNI :>



C^arwcU Ittitteraitg SIthtarg

rs,fe.p.\^V»*tt,e



Cornell University Library

arW3853

A manual of practical pliysics,

3 1924 031 363 116
olin,anx



I Cornell University

'j Library

The original of this book is in

the Cornell University Library.

There are no known copyright restrictions in

the United States on the use of the text.

http://www.archive.org/cletails/cu31924031363116



A MANUAL OF

PRACTICAL PHYSICS

I



A MANUAL OF PRACTICAL PHYSICS
For Students of Science and Engineering

VOLUME I. — Fundamental Measurements and Prop-

erties of Matter.— Heat.

By ERVIN S. FERRY and ARTHUR T. JONES

VOLUME II. —Wave Motion, Sound, and Light.

\In preparation

VOLUME III.— Electrical Measurements.

[/« preparation

LONGMANS, GREEN, AND CO.

NEW YORK, LONDON, BOMBAY, AND CALCUTTA



A MANUAL
OF

PRACTICAL PHYSICS
FOR STUDENTS OF SCIENCE AND ENGINEERING

BY

ERVIN SIDNEY FERRY
PROFESSOR OP PHYSICS, PURDUE UNIVERSITY

AND

ARTHUR TABER JONES
ASSISTANT PROFESSOR OF PHYSICS, PURDUE UNIVERSITY

VOL. I

FUNDAMENTAL MEASUREMENTS AND
PROPERTIES OF MATTER

HEAT

LONGMANS, GREEN, AND CO.
91 AND 93 FIFTH AVENUE,' NEW YORK

LONDON, BOMBAY, AND CALCUTTA

1908



Copyright, 1908,

By LONGMANS, GREEN, AND CO.

All rights reserved.

' ^ I NorfatfotF T^tti%

J. 8. Oushing Co. — Berwlpk & Smith Co.
Norwood, Muss., tr.S.A.



PREFACE

The aim of the present work is to furnish the student of

pure or applied science with a self-contained manual of the

theory and manipulation of those measurements in physics

which bear most directly upon his subsequent work in other

departments of study and upon his future professional career.

Only those experimental methods have been included that

are strictly scientific and that can be depended upon to give

good results in the hands of the average student. Although

several pieces of apparatus, experimental methods, and deriva-

tions of formulae that possess some novelty appear, our fixed

purpose has been to use the standard forms except in cases

where an extended trial in large classes has demonstrated the

superiority of the proposed innovation.

It has been assumed that the experiment is rare that should

be performed before the student understands the theory in-

volved and the derivation of the formula required. Conse-

quently the theory of each experiment is given in detail and

the required formula developed at length. The more important

sources of error are pointed out, and means are indicated by

which these errors may be minimized or accounted for.

The book is designed to be commenced during the second

college year. It presupposes a working knowledge of trigo-

nometry and college algebra, but does not require analytic

geometry nor calculus.



vi PREFACE

Most of the experiments here given were printed privately

some years ago and have since been in constant use, under our

direction, by classes of from one to two hundred students each

semester. They have all been carefully revised for the pur-

poses of this volume.

We are indebted to Mr. G. G. Becknell, Instructor in Physics

in Purdue University, for the method we have adopted for

solving the equation for the coefficient of expansion of a gas.

E. S. F.

A. T. J.
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PRACTICAL PHYSIOS

CHAPTER I

GENERAL NOTIONS REGARDING PHYSICAL MEASUREMENT

1. Introductory

Experimental work has one of two objects ; either to find out

what hind of a result follows under given conditions, or to find out

t\i& numerical relations between different quantities. The first

class of experiments is called qualitative, the second quantitative.

In the earlier days of any science qualitative experiments are

numerous ; when the science is more mature, the majority of the

experiments are quantitative. The determination of various

quantitative relations is the object of physical measurement.

In making a physical measurement, the magnitude of each

quantity concerned has to be expressed in terms of some unit,

and the process of measurement consists essentially in finding

how many times this unit is contained in the given quantity.

The distance between two points, for example, may be expressed

in terms of the number of foot rules which could be laid end to

end between those points.

Some quantities can thus be measured directly, others can be

measured only indirectly. Thus the Young's modulus of a

brass wire cannot be experimentally determined by finding how
many times the unit of Young's modulus is contained in the

Young's modulus of the wire. The Young's modulus of the

wire is usually determined by measuring a force and three

lengths, and from them calculating the Young's modulus.

The great majority of physical measurements are indirect

measurements.

1



PRACTICAL PHYSICS

2. Errors

Every measurement is subject to errors. In the simple case

of measuring the distance between two points by means of a

meter stick, a number of measurements usually give different

results, especially if the distance is several meters and the

measurements are made to small fractions of a millimeter. The

errors introduced are due in part to—
(1) Inaccuracy of setting at the starting point

;

(2) Inaccuracy of setting at intermediate points when the

distance exceeds one meter ;

(3) Inaccuracy in estimating the fraction of a division at the

end point;

(4) Parallax in reading, i.e. the line from the eye to the divi-

sion read not being perpendicular to the scale;

(5) The meter stick not being straight

;

(6) The temperature not being that for which the meter

stick was graduated

;

(7) Irregular spacing of divisions ;

(8) Errors in the standard from which the division of the

meter stick was copied.

Besides the above there are doubtless other sources of error.

It may be well here to note that blunders, such as mistakes

due to mental confusion in putting down a wrong reading, or

mistakes in making an addition, are not usually classed as

errors.

Of the above errors, (1), (2), and (3) can be very much
decreased by having fine divisions on the scale and reading with

microscopes ; (4) can be made small by bringing the scale on the

meter stick close to the object to be measured ; (5) can be made
very small by using a meter stick of special design, or, in rough

work, by holding the meter stick against a straight edge ; (6) can

be nearly eliminated by using the meter stick only at the proper

temperature, or, if its temperature and coefficient of expansion

are known, by calculating a correction to be applied
; (7) can be

diminished only by a careful comparison of the lengths of the



NOTIONS REGARDING PHYSICAL MEASUREMENT 3

different divisions ; and for (8) corrections can be applied only

when something is known about the accuracy of the standard

from which the meter stick was copied. But even with the

most refined methods and the most careful application of cor-

rections, different measurements of the same distance usually

give different results.

Errors due to (6), (7), and (8) may be determinate errors, i.e.

errors for which more or less accurate corrections can be calcu-

lated, whereas those due to (1), (2), and (3) are indeterminate

errors, i.e. errors for which corrections cannot be calculated,

Moreover, of those errors for which corrections are not applied,

some, like those due to (1), (2), and (3), will be variable in

amount and will tend to make the value obtained sometimes too

large and sometimes too small; while others, like those due to

(7) and (8) when corrections for them are not applied, will be

constant and will tend to make the value obtained always too

large or always too small.

Since the average value of those variable errors which tend

to make a result too large will after a considerable number of

measurements be about the same as the average value of those

variable errors which tend to make the result too small, the mean
of a large number of measurements is usually nearly free from

variable errors. In order as nearly as possible to do away with

constant errors, the same quantity should be measured by as

many different methods as possible. The results by the differ-

ent methods will usually differ somewhat, but from them all a

value can be calculated which is probably nearer the true value

than any one of the separate results.

The magnitude of an error may be defined as the amount by

which the value obtained exceeds the true value. That is, if the

true value— which is not usually known— is denoted by T, the

value obtained by 0, and the error by E,

I!=0-T. (1)

The magnitude of the correction which ought to be applied

may be defined as the amount which would have to be added to
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the value obtained in order to get the true value. That is, if

Q denotes the required correction,

Q^T-0. (2)

From (1) and (2) it will be seen that the error in a measure-

ment and the correction which ought to be applied to it are

equal in magnitude and opposite in sign. This does not mean

that the error is exactly equal in magnitude to a correction

which actually is applied, because for the correction itself only

an approximate value is usually known.

Tkustwoethy Figures. — Since all measurements are sub-

ject to errors, it is important to be able to determine how many
figures of a result can be trusted.

In direct measurements it is usually possible to make a fairly

accurate estimate of the extent to which a reading can be

trusted. Thus in reading by the unaided eye the position of

a fine line which crosses a meter stick, the reading will not be

in error by so much as a millimeter but pretty surely will be in

error by more than a thousandth of a millimeter. So the extent

to which the reading can be trusted will lie between these

limits. A person who is accustomed to estimating fractions of

a small division will be rather sure of not making an error so

great as the tenth of a millimeter, and he can often trust his

reading to a twentieth of a millimeter.

It is convenient always to put down all the figures that can

be trusted, even if some of them are ciphers. Thus the state-

ment that a distance is 50 cm. implies that there is reason for

supposing that .the distance really lies between 45 cm. and

55 cm., whereas the statement that the distance is 50.00 cm.

implies that there is reason for supposing that the distance

really lies' between 49.95 cm. and 50.05 cm. When the dis-

tance is said to be 50 cm. the second figure is the last in which

any confidence can be placed ; when the distance is said to be

50.00 cm., the fourth figure is the last in which any confidence

can be placed. If a distance is about 50,000 Km. and the

third figure is the last in which any confidence can be placed,
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this fact may be indicated by saying that the distance is

50.0 • 103 Km.
In indirect measurements the result is usually calculated by

some formula. To find out how many figures should be kept

in the result consider the following two cases:—
1. If the result is the algebraic sum of several quantities, such

as 314.428, 32.6, and 7.063, it is seen that in the sum, 354.091,

no figure beyond that in the first decimal place can be trusted,

because in the quantity which has the fewest trustworthy deci-

mal places, viz. 32.6, no figure beyond the 6 can be trusted—
otherwise it would have been expressed. So the sum will not be

written 354.091, but 354.1. This suggests the following rule :
—

Rule I. — In sums and differences no more decimal places

should be retained than can be trusted in the quantity having

fewest trustworthy decimal places.

2. If the result is the product of two quantities, such as

314.428 and 32.6, then the product cannot be trusted to more

figures than appear in the quantity having fewest trustworthy

figures, irrespective of the decimal place. To make this clear

consider the following products :
—

314.428 X 32.4 = 10187.4672

314.428 X 32.6 = 10250.3528

314.428 X 32.8 = 10313.2384

314 X 32.6 = 10236.4

It is seen that if the quantity which is supposed to be 32. 6 is

really 32.4 or 32.8, then after the first three figures the true

value of the product differs materially from the value obtained.

The second and fourth of the above products show that if more

than three figures cannot be trusted in one of two quantities

which are to be multiplied, it is not worth while to use more

than three— or at most four— figures of the other. These

facts suggest the following rule :
—

Rule II. — In products and quotients no more figures should

be kept than can be trusted in the quantity having fewest trust-

worthy figures.
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Until the final result is reached, it is often worth while to

keep one more figure than the above rules indicate.

For logarithms a safe rule is the following :
—

Rule III. — When any of the quantities which are to be

multiplied or divided can be trusted no closer than 0.01 % use

a five-place table, when any of them can be trusted no closer

than 0.1% use a four-place table, and when any of them can

be trusted no closer than 1 % use a slide rule.

Required Accueacy op Measurement. — From Rule I.

it will be seen that if a small quantity is to be added to a large

one, the percentage accuracy of the measurement of the small

quantity need not be so great as that of the large one. Thus

if JI= a-\-h, and if a is about 100 cm. and h about 1 cm., a 1 %
error in a will produce in ^no greater effect than a 100 % error

in 6. When quantities are to be added or subtracted, they

should be measured to the same number of decimal places.

From Rule II. it will be seen that if a small quantity and a

large one are to be multiplied the percentage accuracy of the meas-

urement of the small quantity should be at least as great as that

of the large one. Thus if iZ'= a5, a 1 % error in a will produce

in JI the same effect as a 1 % error in h. So that if a is about

100 cm. and h about 1 cm., and if h cannot be trusted closer than

0.01 cm., there is no gain in accuracy by measuring a much closer

than to within 1 cm. When quantities are to be multiplied or

divided, they should be measured to within the same fraction of

themselves, e.g. all of them within 1 % and none of them much
closer, or all of them within 0.01 % and none of them much closer.

The last statement needs modification in the case of a power.

If the value found for a quantity a is 1 % too large, i.e. is 1.01 a,

then the value that will be obtained for a^ ig 1.0201 a, which is

about 2 % too large, and the value obtained for o^ is 1.030301 a,

which is about 3 % too large. In general, if the value found
for a\s,h% too large, the value that will be obtained for a" will

be nlc% too large. So that a quantity which is to be squared,

cubed, or raised to some higher power should be measured with

more care than if it entered the formula to the first power.
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ERRORS INTRODUCED BY COMMON APPROXIMATIONS

Num-
ber
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Approximate Formula. — Beside the errors of observa-

tion, errors may be introduced into indirectly measured quanti-

ties by the use of formulae which are only approximate. Thus,

the sine and tangent of small angles are used as equal to the

angles, the reciprocal of (1 + a) is written equal to (1 — a)

when a is small, 3.14 is used for tt, a number of figures are

dropped from the end of a product, etc. Whenever such an

approximation suggests itself, the error introduced by using it

should be investigated and the approximation not made unless

the error thereby introduced is so small as not to affect any

figure that could otherwise be trusted in the result.

The preceding table of a few common approximations may
prove useful.

3. Methods of expressing Results

The object of a quantitative experiment is sometimes the

measurement of some quantity, and sometimes the determina-

tion of the relation between various quantities. "When the

relation between several quantities is sought, the usual method
is, keeping all but two of the quantities constant, to vary

by known amounts one of these two and then determine the

changes produced in the other. Another pair of the quantities

is then varied while the rest are kept constant, and so on until

a sufficient number of pairs of quantities have been investi-

gated. The various relations found to exist between the

various pairs of quantities can then be combined to give the

relation sought.

When one quantity has been given various known values

and the corresponding values of a second quantity have been
determined, the relation between them can always be expressed
graphically; it can also be expressed more or less accurately

by means of an empirical formula; and when this formula is

sufficiently simple, the relation can without difficulty be ex-

pressed in words.

To illustrate these methods, suppose that it is desired to

determine the relation between the distance a body has fallen
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from rest and the time it has been falling. Suppose that a

number of determinations are made, in each of which a ball is

allowed to fall a known distance, and the time required is ob-

served, the values obtained being those in the following table :—

.

DtsTANOE Fallen
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as the body falls it goes continually faster and faster. The

curve also serves to find the distance fallen in any time not

much exceeding 0.4 sec, or to find the time required to fall

any distance not much greater than 80 cm.

The next step is to find the equation which represents this

curve. Let the time which has elapsed be represented by t,

and the distance fallen by I. If I decreased when t increased,

the equation might be of a form

l = a+ ,

t t^ if

etc.

or

or



NOTIONS REGARDING PHYSICAL MEASUREMENT 11

In the case in hand, however, since I increases when t increases,

the relation cannot be one of the above forms ; it may, perhaps,

be of a form
l = a-\-U, (3)

or l = a + U+ ct\ (4)

or l = a + U + ct'^ + d1?, (5)

etc.

If the relation were of the form in (3), two points would suffice

to determine a and h. For if the coordinates of the two points

were (t^, Zj) and (t^, l^, we should have

and l^ = a + bt^,

and from these two equations we could determine the two

quantities a and b. Similarly, if the relation were of the form

in (4), three points would suffice to determine a, b, and c.

Thus, if only two points are determined, there can always be

found a relation of the form in (3) that will be satisfied by

both those points ; if three points are determined, a relation

can always be found containing three constants which will be

satisfied by all three points ; if n points are known, a relation

can always be found containing n constants which will be satis-

fied by all n points. But an equation containing many con-

stants is cumbersome, and it is usually possible to find an

equation with only three or four constants which is very nearly

satisfied by a considerable number of points.

A convenient method- of finding how many constants should

be used in an equation like (3), (4), or (5) will be illustrated

by considering the curve plotted in Fig. 1. The maximum
abscissa is divided into some half dozen or more convenient

equal parts, the ordinate at each division point is read, and the

corresponding values of abscissas and ordinates are recorded in

the first two columns of a table :
—
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t



NOTIONS REGARDING PHYSICAL MEASUREMENT 13

From theoretical considerations the formula for a body fall-

ing from rest should be

To compare the two equations compute by each of them the

distance fallen in a given time. Thus if g is 980 cm. per sec.

in a sec, the distance fallen in 0.3 sec, computed from the

100
so

so

70

GO

50

40
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0.3 sec. three times as far as 0.1 sec., etc., and similarly for the

distance fallen. Another method of plotting results is often

adopted, viz. to plot along each axis a distance which, instead

of being proportional to the value itself, is proportional to its

logarithm. In order to save looking up logarithms coordinate

paper having the rulings spaced logarithmically can be used.

Fig. 2 represents a sheet of logarithmic coordinate paper with

the values for times and distances fallen plotted upon it. The

curve connecting these points is seen to be a straight line.

If a straight line had been obtained when plotting on uni-

formly divided coordinate paper, it would be known at once that

the equation of the curve was l=a + bt, where a would denote

the intercept on the Z-axis, and b the tangent of the angle between

the curve and the i-axis. Since, instead of t and I, the quanti-

ties which have been plotted in Fig. 2 are log t and log I, the

equation of the straight line which is obtained is

log 1= a+ h log t.

But a is, of course, the logarithm of some number, and so the

equation may be written

log I = log A + b log t.

Whence I = At^.

Since b is the tangent of the angle made by the curve with the

f-axis, its value can be found by dividing c, in Fig. 2, by d.

On measuring these and dividing, the value found for b is

2.002. Since A is the number whose logarithm is the inter-

cept on the Z-axis, the value of A may be read off directly.

It will be noticed that the values of the times have been
multiplied by one hundred before plotting. This does not

alter either the shape of the curve or its slope, but merely

throws it far enough to the right to get it on the paper. If it

were moved to the left to its proper place, it is seen that it

would cut the Z-axis some place between 100 and 1000, and
since the triangle efg is equal to the triangle that would be
formed by the Z-axis, the curve, and the 100 cm. line, it follows
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that the value of A is the same, aside from decimal point, as the

intercept fg on the 10-sec. line. The point where the curve

crosses the 10-sec. line is at 4.9 cm. Moving the decimal point

so as to make the value lie between 100 and 1000, the value

obtained by this method is about 490. The empirical equation

obtained by this method is, then,

Z = 490 «2<x)2,

while the theoretical equation is

I = 490 «2,

4. Notation

In subsequent chapters frequent use will be made of the

laws of series. The attention of the student is called to the

following symbolism and to the facts here indicated by means

of it :
—

The symbol JL/'^ is an abbreviated way of writing

[1.™ + 2"' + 3™
-I h {'"+ (n — 1)" + w™], and is read : " The

sum of the terms i"" where i has all integral values from 1 to n."

Expressions which are to be summed can be expanded as

shown by the following example :
—

X (*-!)' = S (*"- 2 i + 1) = 5 ^'- 22) i+ M. (6)
^1 ... n i=l ••• n » 1=1 ... n i=l — n

By some one of the algebraic methods of summing series it

can be shown that :
—

Xi =<^, (7)
2=1... ra Z

i=i...« 6

g.3^.^(. + l)^
(9^

t=l...

»

4:



CHAPTER II

METHODS AND APPARATUS FOR THE MEASUREMENT OF

FUNDAMENTAL QUANTITIES

1. Measurement of Distance

The vast majority of the measurements made in a physical

laboratory are ultimately measurements of distance. Two
temperatures, for instance, may be compared by the difference

in the lengths of a thread of mercury; a pressure may be

determined from the height of a barometric column, or from

the distance that the pointer of a pressure gauge moves ; a dif-

ference in time may be measured by the distance that the hand

of a clock has moved; etc.

The Meter Stick is the instrument most often used in the

laboratory for the measurement of moderate distances. Usu-

ally the smallest divisions marked on it are millimeters. Since

the last division at each end is liable in time to become worn

a trifle short, tlie ends are seldom employed. In use, the

meter stick is turned up on its side so as to bring its scale as

close as possible to the object to-be measured, some line on the

meter stick is brought as nearly as possible into coincidence

with one end of the distance to be measured, and the reading

of each end of the distance is noted, the tenths of a millimeter

being estimated. The difference between the two readings

gives the distance sought. Division lines which are as close

together as a fifth of a millimeter are usually more confusing

than helpful. A very little practice, however, will make possi-

ble the rather accurate estimation of a tenth of a division, pro-

vided the division is not much smaller than a millimeter.

For the more accurate measurements of small distances, the

principle of the micrometer screw has many applications. A
16
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carefully made screw with a divided head turns in an accurately

fitting nut. An index mark close to the divisions on the head

shows through how many divisions the screw has turned.

The distance between the threads of the screw divided by the

number of divisions on the head gives the distance the end of

the screw advances when the head is turned through one of its

divisions. The principle of the micrometer screw is employed

in the micrometer caliper, the spherometer, the dividing

engine, the filar micrometer microscope.

The Micrometer Caliper (Fig. 3) consists of an accurately

made screw which can be advanced toward or away from the

stop A. The whole

number of millimeters " B ,_ ^,

distance between A and

B is indicated by the

millimeter divisions on

the shank C uncovered

by the sleeve B, while

the fraction of a milli-

meter is given by the yig. 3.

graduated circle on the

edge of the sleeve B. If the pitch of the screw is half a milli-

meter and if the head is divided into fifty equal spaces, one

division on the shank will be uncovered by the sleeve for every

two complete turns of the screw, and each space on the divided

head corresponds to an advance of the screw of 0.01 mm.
Thus if tenths of a division on the sleeve are carefully esti-

mated, a reading can be trusted to 0.0005 mm.
The "zero reading" of the instrument, i.e. the reading when

B just touches A, should always be recorded. In making a

reading, the sleeve is never turned up tight, but only until a

very slight pressure is felt.

In the Spherometer (Fig. 4) a micrometer screw which has

a very large divided head passes vertically through a nut

mounted at the center of an equilateral tripod. The pitch of

the screw is frequently | mm, and the head divided into 500
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equal spaces, so that by estimating tenths of a division, a read-

ing can be made within 0.0001 mm. However, with the type of

spherometer illustrated in the figure

several successive settings usually

show that they cannot be trusted

much closer than 0.001 mm., so that

it is useless to read the fractions of a

division. The spherometer ' is espe-

cially useful in measuring the radius

of curvature of spherical surfaces—
whence its name.

In the Dividing Engine (Fig. 5)

a long micrometer screw with a large

divided head A is mounted horizon-

tally in a massive base between a pair of tracks in such a way
that it has no longitudinal movement, but when rotated causes

a nut to advance parallel to the tracks. Attached to the nut B
is a carriage G which slides along the tracks with the advance of

the nut. P^astened to the base are one or two microscopes M,
with cross hairs in the eyepieces, which can be focused upon

Fig. 4.

Fig. 5.

an object resting upon the sliding carriage. In making the

measurement of the .distance between two points, the carriage

is slid along until one point is under the cross hairs of a micro-
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scope and then the micrometer screw is turned until the

other point comes under the cross hair. The difference

between the reading of the micrometer screw when one point

was under the cross hair and the reading when the other point

was under the cross hair gives the distance between the two
points. If the pitch of the screw is 1 mm., the head divided

into 200 divisions, and these read to one fifth of a division, a

leading will be made within 0.001 mm. The microscope should

then be of stifficient magnifying power to show clearly a move-

ment of 0.001 mm. (See also third paragraph below.)

The dividing engine receives its name from the fact that it

is most often used to rule divided scales. Fastened to the base

is a system of levers by which a tracing point S can be drawn

across the sliding carriage in a direction normal to the motion of

the latter. By this means a line can be drawn upon an object

fastened to the top of the carriage, the carriage advanced by a

definite amount, another line drawn parallel to the first, and so

on until a scale is constructed. The mechanism carrying the

tracing point is often arranged with notched wheels D which

permit lines to be drawn of unequal length, so that in ruling

a scale every fifth and tenth line may be drawn longer than

the others.

The FUar Micrometer Microscope is a microscope that has in

the focal plane of the eyepiece two parallel cross hairs, a and b

(Fig. 6), which can be moved across the

field of the microscope by means of a mi-

crometer screw. In the focal plane there

is also a fixed serrated edge, cd, the teeth of

which serve as a scale to indicate the whole

number of turns made by the micrometer

screw. The distance on the microscope

stage corresponding to one turn of the ^^°- ^

micrometer screw must be determined by focalizing the micro-

scope on a standard scale. The standard commonly used is a

scale having ten divisions to the millimeter. Care is taken to

have the lines of the standard scale parallel to the movable
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cross hairs. Readings are made on, say, five consecutive lines

of the standard scale near the left side of the field of view,

and then on the same number near the right side of the field.

From the difference between the readings for the left-most

lines of the two sets is obtained one determination of the dis-

tance corresponding to one turn of the screw ; from the differ-

ence between the readings for the second lines in the two sets

is obtained a second determination ; and so on.

If the pitch of the screw is such that one turn corresponds to

a distance of 0.1 mm. on the microscope stage, and if the head

is divided into 50 parts, one division on the head corresponds

to 0.002 mm. With the best microscope it is impossible to

distinguish lines closer together than about 0.001 mm., but the

mean of a number of careful settings on a very fine line can

be trusted to about 0.0005 mm. In making a setting, the

screw should always be turned up from the same direction in

order to avoid errors due to backlash.

In the Eyepiece Micrometer a finely divided scale ruled on

thin glass is placed in the focal plane of a microscope. The
eyepiece micrometer is standardized in the same manner as the

filar micrometer.

Vernier s Scale is a device employed for the estimation of

fractions of the smallest divisions of a scale. It consists of a

short auxiliary scale capable of sliding along the edge of the

principal scale. The precision attainable with the vernier is

about three times that attainable with the unaided eye. The
theory of the vernier may be made clear

I
I ^ ^ ^ ^ I I I I I I I I

by the following example : Suppose

I

I I I I

I

' ' ' '

I

I

that along a meter stick there slides a

vernier 9 mm. long divided into ten
^'°' '^-

equal parts. Each division on the ver-

nier is then 0.9 mm. long, and if the 0-mark and the 10-mark

on the vernier coincide with lines on the meter stick, then the

1-line on the vernier lacks 0.1 mm. of coinciding with a line on
the meter stick, the 2-line lacks 0.2 mm. of coinciding with a

line, the 3-line lacks 0.3 mm., and so on. If, then, the vernier
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were to be moved along 0.3 mm., its O-line would be 0.3 mm.
beyond some mark on the meter stick, and the 3-line would
coincide with some mark; if the 7-line coincided with some
mark, the 0-line would be 0.7 mm. beyond some mark, etc.

The position of the 0-line is what is desired. In Fig. 7 the

reading is 8.06 in.

In using any vernier, we first find how many divisions on

the vernier correspond with how many on the main scale, and
from this calculate the length of a vernier division. The dif-

ference between the length of a scale division and the length

of a vernier division is called the " least count " of the vernier.

The least count multiplied by the number of the vernier line

which coincides with a line on the scale gives the distance be-

tween the 0-line of the vernier and the preceding line on the

Fig. 8.

scale. In the case of a circular scale divided into thirds of a

degree, the vernier is often made fifty-nine thirds of a degree

long and is divided into sixty equal parts. Its least count is

then one third of a minute. Fig. 8 shows such a vernier, and

also illustrates the manner in which verniers are often num-

bered so that readings can be made directly without computa-

tion. In this particular case, since each vernier division corre-

sponds to one third of a minute, it is natural to number the

fifteenth division 5, the thirtieth division 10, etc., minutes. In

Fig. 8 the reading is 145° 48' 0".

The Vernier Caliper (Fig. 9) consists of a finely divided steel

scale O with a fixed jaw at one end, and a jaw B provided with

a vernier scale I> that can slide along the length of the scale.

In using this instrument the jaw B is nearly closed upon the
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object to be measured, the screw E is tightened, and the final

adjustment carefully made with the screw F. The zero read-

ing should always be noted, and care should be taken that F
is turned only until a slight pressure is felt.

The Cathetometer is an instrument for measuring vertical

distances in cases where a scale cannot be placed very close to

the points whose distance apart is desired. It consists essen-

tially of an accurately graduated scale, together with a hori-

zontal telescope capable of being moved up and down a rigid

vertical column.

In one pattern of the instrument (Fig. 10) the scale is en-

graved on the supporting column, while in another pattern the

scale is independently supported parallel to the object being

measured and close beside it. In the case of an instrument of

the first type, the carriage can be clamped at any point along

the length of the vertical column and its position read bj^

means of the scale on the column and a vernier ( V, Fig. 10),

attached to the carriage. In the case of an instrument of the

second type, the position of the carriage is obtained by observing

through the telescope the point on the distant scale that appears

to coincide with the cross hair of the telescope.

Before taking a reading with a cathetometer three adjust-

ments are necessary. The first adjustment is to make the axis

AB vertical. To effect this, the telescope is set approximately

parallel to the line connecting two of the three leveling screws

in the base, and one or both of these two screws is turned until

the bubble in L is near the middle of the vial. The telescope
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is then rotated about AB until it points in the opposite direc-

tion. If the bubble is not still in the middle, it is brought

back to the middle by turning

one or both of the two screws, the

number of turns being counted.

Half of that number of turns is

then made in the opposite direc-

tion and the bubble brought back

to the middle of the vial by means

of the screw D. The telescope

is then turned so as to be 90°

from its original position and the

third screw in the base adjusted

until the bubble is in the middle.

If the bubble does not now re-

main in the middle of the vial,

however the telescope may be

turned about AB, the entire ad-

justment is repeated.

The second adjustment is to

make the axis of the telescope

horizontal. In doing this the

telescope is taken from its wyes,

turned end for end, and replaced.

If the bubble does not come to

rest at the middle of the vial, it

is brought to the middle by the

screw J), the numbers of turns

required being counted. Half

this number of turns is made in

the opposite direction and the bubble then brought to the mid-

dle by means of the screws at the ends of the vial. The tele-

scope is again reversed in the wj^es, and if the bubble does not

still come to rest in the middle, the above operations are repeated.

The third adjustment is to focalize the telescope. The front

tube containing the eyepiece is moved in and out until the cross

Fig. 10.
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hairs appear as distinct as possible. Then, while sighting along

the outside of the telescope, the latter is brought to about the

right height and turned so as to point approximately at the

object to be viewed. The eye is then placed at the eyepiece

and the focalizing screw F turned until the image of the object

does not move with reference to the cross hairs when the

observer's head is moved slightly from side to side.

If the scale is engraved on the column which carries the tele-

scope, the latter is focalized first on one of the points and then

on the other, the final setting being made in each case by the

screw F. After each setting the height of a mark on the

carriage is read by the vernier V. The difference between

the two readings gives the desired distance.

If the scale is independently supported, it is placed vertical,

close to the object being measured, and so that the scale and

object are at about the same distance from the telescope.

The telescope may be focalized on one of the points and then

rotated about a vertical, axis until the scale is in the field of

view, the height of the cross hair being then read directly ; or

a small mirror capable of rotation about a vertical axis may be

attached to the telescope just beyond the objective, so that by

rotating this mirror, an image of either object or

scale can be seen without rotating the telescope.

The height of the second point is then observed

in the same manner.

When the scale is independently supported, the

error introduced by lack of verticality of the scale

may be easily found as follows: 'Let AB (Fig. 11)

be a vertical line drawn through the point B of

the scale CB. Then in place of the real height

AB, we read GB, and the error is CB — AB =
CB - CB cos d=CB (1- cos 61).

For a given inclination of the scale, this error

will evidently be greatest when CB is greatest.

If, then, the scale is 100 cm. long and readings are to be trusted

within 0.01 cm., the scale should be so placed that its departure

Fio. 11.



MEASUREMENT OF FUNDAMENTAL QUANTITIES 25

from verticality is not greater than that given by 0.01 = 100

(1 — cos ^). From this equation 6 is found to be somewhat

more than 0.01 radian, which means that for the given degree

of accuracy the scale is nearly enough vertical when a plumb

line dropped from its top would fall within 1 cm. of its bottom.

2. Measurement of Mass

One of the most common as well as the most accurate

methods for the comparison of masses is afforded by the beam

balance (Fig. 12). The beam BB' can rotate about a knife edge

K^ which rests upon an agate plate. Suspended from knife

edges at K^ and K^ are the scale pans^j and p^. A handle

H operates an arrestment consisting of a horizontal rod and

three cams Cj, C^, and 0^, by means of which the knife edges
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may be relieved of the weight of the beam and pans when the

balance is not in use and when the masses in the pans are being

changed. Fastened to the beam is a long pointer / which

swings in front of a graduated scale S. Whether the divisions

on this scale are numbered or not, it is convenient to assume

that the middle division is numbered 10, and that the divisions

are numbered from left to right. Projecting from the side of

the case is a rod R by means of which a bent aluminium wire

called a rider can be placed at any point along the beam. This

rider is used in place of standard masses smaller than 10 mg.

The top of the beam is often divided into twenty equal

parts, the 0-line being over the central knife edge, and the

10-lines over the other knife edges. If the mass of the rider

is 10 mg., and it is placed on one of the 10-lines, it produces

the same effect as if a 10 mg. mass were in the corresponding

pan ; but if it is placed at division 3, it has a turning moment
only three tenths as great, and so produces the same effect

as would a 3 mg. mass placed in the pan. Occasionally a

rider of some other mass is used and the beam divided accord-

ingly.

The Method of Vibrations is usually employed in making ac-

curate weighings. When using this method, the case is at first

left closed and the arrestment released. If the pointer does not

begin to swing, the case is opened, the hand waved lightly

over one pan, and the case again closed. With the pointer

swinging in front of the scale, but not beyond it, the zero point

of the balance is'determined ; i.e. the point at which the pointer

would finally come to rest, either with no load on the pans, or

with equal loads on the two pans.

This is done by observing an odd number of successive turn-

ing points of the pointer. As the pointer swings, the distance

between any two successive turning points on the same side of

the scale gradually decreases, but in a few swings the decrease

is slight. The zero point is about halfway from b (Fig. 18)

to a point midway between a and c. It is also about halfway

from c to a point midway between b and d, about halfway from
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d to a, point mid^vay between e and e, etc. Since the distance

from a to c is about the same as that from c to e, the average

of a, e, and e is nearly the same as c. The zero point, then, is

very near the point found by taking the

average of a, e, and e, and averaging with

it the average of b and d. Suppose, for

instance, that five successive turning

points are observed to be :
—
^•^

11 9

li 11-8
8.7 FiQ, 13,

Then the average of the turning points at the left is 8.53 and

of the turning points at the right is 11.85. Consequently the

zero point is in the neighborhood of [J(8.53+ 11.85) = ]10.2.

Five successive turning points are usually enough to observe,

but any odd number of successive turning points may be used

in the same way, viz. by averaging the left turning points and

averaging the right turning points and then finding the average

of the two results. It should be noted that this method of

finding the zero point is most accurate when the pointer swings

with a small amplitude. Since the zero point varies from day

to day, and even from hour to hour, it should be determined

for each experiment. For very accurate work it sliould be

determined both at the beginning and at the end of a weigh-

ing, and the average value used.

After the zero point has been determined and while the

arrestment is elevated so as to lift the beam off the knife edge,

the object is placed on one pan and standard masses on the

other. Right-handed persons find it most convenient to place

the object on the left pan so that the mass pan is in front of the

hand that makes the adjustment of the standards. Each time

that a new mass is placed on the pan the arrestment is lowered

just enough to see in which direction the pointer would swing,

but no masses are ever put on or taken off while the pointer is

free to swing. When the masses are so nearly adjusted that
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when the arrestment is entirely released the pointer swings

back and forth near the zero point, the position at which the

pointer would finally come tp rest is determined from several

successive turning points in the same way that the zero point

had been. The rider is then moved so as to alter the effective

mass on tlie mass pan by one or two milligrams, and the new
position of rest determined. From these observations the mass

which would be required to make the point of rest coincide with

the zero point can be calculated without taking the time to

effect the balance experimentally.

Suppose, for example, that the zero point of the balance is

10.2 scale divisions, and that with the object on the left pan

and a mass of 24.166 g. on the right pan, the point of rest is

found to be 11.6 scale divisions. Since this point of rest is to

the right of the zero point, the mass on the right pan is too

small. Suppose that by means of the rider the effective mass

on the right pan is increased by 2 mg., and that the new point

of rest, determined as before, is found to be 7.4 scale divisions.

Then the addition of 2 mg. has moved the point of rest through

[11.6 — 7.4 =
J
4.2 scale divisions, andl mg. would have moved

it 2.1 scale divisions. It follows that the mass which would

have to be added in order to move the point of rest through the

[11.6 — 10.2=
] 1.4 scale divisions to the zero point of the

balance is [1.4-=- 2.1 =j 0.7 mg. Consequently the apparent*

mass of tlie object is [24.166 + 0.0007 =] 24.1667 g.

The sensibility of a balance is defined as the number of scale

divisions through which the point of rest is moved by the ad-

dition of one milligram to the load on one of the pans. In the

above example the sensibility was 2.1 scale divisions per milli-

gram. The sensibility, however, depends upon the load and
should therefore be determined for each weighing. The fact

that it depends upon the load may be shown as follows :
—

Let Kj^, K^, JTg (Fig. 14), denote the three knife edges

of the balance, and M the center of mass of the beam. Let

* See below, Errors in Weighing.
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IM^+P^'lg

Pi and P2 be the respective masses of the left and right

pans, and M^ the mass of the beam. Suppose that with a

mass M^ on the left pan and a mass M^ on the right pan

the beam comes

to rest in the

position indi-

cated. Then,
since the balance

is in equilibrium,

the sum of the

moments of

CM, + p,)g, (M^

+P2)ff, and i% (Af,+p^te

taken about IC^

must equal zero,

i.e.

CM^+p^-)gxl^ sin {6^ + ^-)

— M^g X r sin ;8 = 0,

(iHfj + pj)l,Csin 0, cos yS — cos 0^^ sin /3)

— (ilfj +i»2)^2(®i'^ ^2 ^^^ ^ + ^os ^2 ^i^ /^)

- iffgr sin /3 = 0. (10)

Since in the actual case yS is always small, we may replace

sin /3 by /3, and cos /3 by 1. Then if l^ = l,= I, if ^^ = ^1 = ^, and

if ^2 =Pi=Pi we have

(ifeTj + ^)Z(sin (9 - /3 cos 6") - (ifg + p)Z(sin (9 + /3 cos 61)

Whence,
/8

Fig. 14.

(lfl+Pl)5'XZiSin(^l-^)

or

? sin

iUfi - ilfj ^ (^1 +-^2 + 2p)^ cos e + M/ (11)

If ilfi - ifg = 0, then /3 = ; and if iUfi - ilfj = 1 ™g- ' then the

left member of (11) denotes the movement of the pointer for

1 mg. change in the load. That is, each member of this equa-

tion is proportional to the sensibility of the balance.

If 6 is 90°, cos 9 is zero, and whatever the value of the load,

iffj -I- ii^ , the right member of (11) is unaltered ; that is, when
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6 is 90°, the sensibility is independent of the load. If 6 is less

than 90°, cos 6 is positive, and as the load, M-^ + M^, increases,

tlie right member of (11) decreases ; that is, when 6 is less

than 90°, the sensibility decreases as the load increases. If 6 is

larger than 90°, cos 9 is negative. It follows that as M-^^ + M^
increases, the denominator of the right member of (11) de-

creases, and the sensibility therefore increases ; that is, when 6

is larger than 90°, the sensibility increases as the load increases.

Since different loads necessarilybend the beam different amounts,

it follows that the sensibility is different for different loads.

The maker usually arranges to have the three knife edges in

line when the balance has about half its maximum load.

Errors in Weighing.—The errors to which a weighing is espe-

cially liable are due to (1) the buoyant effect of the air, (2) errors

in the standard masses, (3) difference in the lengths of the bal-

ance arms, and (4) difference in the masses of the scale pans.

(1) The buoyant effect of the air will be different upon the

bodies on the two scale pans unless their volumes are equal.

The true mass may be found as follows : liCt M, B, and V de-

note respectively the mass, density, and volume of the body

the mass of which is desired, and m, d, and v, the mass, density,

and volume of the standard masses which just balance it in air

of density p. Then the difference between the weight of the

body in vacuum and its weight in air is equal to the weight

of the air displaced pVg, and the weight of the body in air is

consequently Mg—pVg. In the same manner, the standard

masses when in air weigh mg — pvg. Since the weight of the

body in air equals the weight of the standard masses in air,

Mg-pVg = mg~pvg,

or Mg-p—g=mg-p—g.

1-1
Whence M=m (12)

1-1
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For ordinary temperatures and pressures p is about 0.0012 g.

per cc, so that if any solid or liquid is being weighed, p is very
small compared with i), and we may apply approximation (5),

p. 7, obtaining from (12)

or, employing approximation (2),

U. Jf^„[l+,(l-l)J, (IS)

or, since for the brass standards ordinarily used in weighing,

d is about 8.4 g. per cc,

1+0.0012 ('1-0.12)1. (14)

It will be noticed tliat a considerable error in 2) can produce

in the value for M only a small error, so that a fairl}"- rough

value for D can be used in (14). The error introduced by the

approximations employed in obtaining (13) will almost always

be negligible, but for accurate wofk the values of p and d

should be determined and not assumed.

(2) Errors in the standard masses may be corrected as ex-

plained under Experiment 15.

(3) and (4) Errors due to difference in the lengths of the

balance arms and to difference in the masses of the scale pans

can be nearly eliminated by weighing the body first in one pan

and then in the other. Let Zj and l^ denote the respective

lengths of the left and right arms of the balance, and p-^ and p^

the respective masses of the left and right pans. If an object

of mass M'\8 balanced by standard masses m^ when the object is

in the right pan, and by standard masses m^ when the object is in

the left pan, then in Fig. 14, /S = 0, and if ^2=^i'

and iPi+M)\=--{p^+m^^l^. (16)
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If the pointer swings near the middle of the scale with no load

on the pans, we have also i'iZi=/'2^2' ^° ^^^^ (1^) ^^^ 0-^^

^^°°°^^
m,l,= Ml,

and Ml^= 'm^l^.

Whence M^-^:^^. (17)

In case of a balance in ordinary adjustment m^ will so nearly

equal «ij that we may use approximation (7), p. 7, and in place

of (17) write
M=lim, + m,). (18)

Precautions in the use of a balance,

1. Do not place on the pans anything wet, any mercury, nor

anything that might injure the pans.

2. Never change the masses on the pans nor move the rider

when the beam is free to swing.

3. Never touch any standard masses with the fingers— use

forceps.

4. Keep all standard masses in the proper compartments in

the box when not actually in use upon the balance pan.

6. Never raise nor lower the arrestment so quickly as to

cause any jerk.

6. When not actually altering masses keep the case closed.

7. Before leaving the balance bring the arrestment into play

so that the beam is not free to swing, set the rider at the zero

mark, dust off the pans and the floor of the case with a camel's-

hair brush, and close the case^

3. Measurement of Time

Instruments.— In nearly all apparatus for measuring time

use is made of the principle that the period of vibration of a

body oscillating with harmonic motion is constant. The most

commonly used vibrating bodies are the pendulum, the balance

wheel, and the tuning fork. Any one of them may be kept

going indefinitely by a slight impulse given it each tim6 it

passes through its position of equilibrium.
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In order to give this impulse to a pendulum or a balance

wheel, and also to count its vibrations, there is usually attached

to it a mechanism called clock work. A pendulum of such a

length as to make in each second one beat, i.e. half a complete

vibration, is called a seconds pendulum. Such a pendulum is

used in standard clocks. Where accuracy must be sacrificed to

portability, the balance wheel is employed, as in the watch and

the chronometer. A stop watch is a watch provided with a

starting and stopping device so that the interval between two

events can be easily determined.

The impulse to keep the tuning fork going is usually given

by an electro-magnet which is periodically actuated by a cur-

rent made and broken by the motion of the tuning fork itself.

Attached to one prong of the tuning fork is a sharp point which

rests lightly against a sheet of smoked paper. The paper is

wrapped round a metal drum which rotates and at the same

time moves slowly in the direction of its axis, so that the trace

made by the vibrating tuning fork is a wavy helix. The

instants at which two events occur may be marked by minute

holes made in the blackened surface of the paper by electric

sparks which are

caused to pass

from the tracing

point to the metal

drum. If the

period of the tun-

ing fork is known,

the number of

waves and fraction

of a wave in the

part of the line

between the two small holes shows the interval of time between

the two events. A tuning fork and drum arranged in this

manner constitute a tuning-fork chronograph.

The Astronomical Chronograph (Fig. 15) differs from the

tuning-fork chronograph principally in that the drum runs

Fig. 15.
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more slowly, the paper is usually not smoked, and in place of

a tuning fork there are one or more pens, A and 5, which, by

means of electro-magnets, can be slightly displaced parallel to

the axis of the drum. One electro-magnet is included in a

circuit which is so connected to a clock pendulum that every

second a notch is made in the line its pen is drawing. In the

circuit containing the other electro-magnet a telegraph key can

be so placed that an observer can produce a series of notches

corresponding to a series of observed events, or the circuit may
contain some device whereby the successive events may auto-

matically close the circuit for an instant.

A clock is seldom read closer than to seconds ; a stop watch

is usually graduated in fifths of a second ; an ordinary watch,

due to eccentricity in the mounting of the second hand, can

usually not be trusted within three or four tenths of a second
;

an astronomical chronograph can often be trusted to a hun-

dredth of a second ; a tuning-fork chronograph may without

difficulty be made trustworthy within a thousandth of a second.

Methods op Measuring Time. — The measurement of a

short interval of time between two separate events is usually

made with a stop watch or chronograph. But for determining

the period of a regularly recurring event, like the swing of a

pendulum, there are several methods of procedure, the choice

between which depends upon the magnitude of the period and the

accuracy required. The movement of a vibrating point from one

end of its path to the other is called an oscillation. The complete

to-and-fro movement from the instant when the vibrating point

leaves any given position to the instant when itnext passes through

the same position in the same direction is called a vibration. The
interval of time between two successive passages of the vibrat-

ing point in the same direction through a given position is called

the period of the vibration. The period of an oscillation is half the

period of a vibration. The most useful methods of determining

the period of a regularly recurring event will now be considered.

1. The Direct Method consists in noting by means of a clock

or stop watch the interval of time between two recurrences of
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the event and dividing this interval by the number of recur-

rences. The accuracy of this method depends upon the accu-

racy of determining the times of beginning and ending the

count, and upon the time that is allowed to elapse.

2. The Method of Omitted Transits. — The preceding method
may be slightly modified so as to increase somewhat the accu-

racy without materially increasing the time or labor required.

Suppose, for example, that a heavy horizontal disk is suspended

by a vertical wire, about the axis of which it can vibrate, and

that the instant at which a mark on the edge of the disk passes

through the middle point of its path is noted for sixty-one con-

secutive swings. Then the difference between the fifty-first

time of passing and the first time of passing gives the time of

fifty swings ; the difference between the fifty-second time of pass-

ing and the second time of passing gives an independent deter-

mination of the time of fifty swings ; and so on. Thus after

counting sixty swings ten independent determinations of the

time of fifty swings are obtained, and their average is more trust-

worthy than a single determination. There is no need of noting

the times of the transits between the tenth and the fiftieth.

3. By the Eye and Ear Method an experienced observer can

readily estimate times of transits to a tenth of a second. For a

concrete case consider again the vibrating disk that was used as

an example for the method of omitted transits.

After focalizing a telescope on the mark on the edge of the

disk, the latter is set into vibration and the time of transit of the

mark past the cross hair of the telescope is obtained as follows:

Looking at the clock, the time in hours, minutes, and seconds

is observed ; then counting seconds, and while continuing the

count, the hour and minute are recorded. Without interrupt-

ing the count, the eye is placed at the telescope and the time of

a transit is noted. This time can, with practice, if the mark

passes rapidly, be estimated to within a tenth of a second.

Without interrupting the count this reading is recorded. Con-

tinuing the count, the eye is again placed at the telescope ready

for the next transit, and the time of the transit observed and
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recorded as before. After a little practice this method can be

used with ease and confidence for the observation of the times of

any number of transits. During the count one should occasion-

ally glance at the clock to confirm the correctness of the count.

4. The Flash and Stop-watch Method. — On a stand directly

in front of the disk B (Fig. 16) is placed a stop watch W,

and a few inches above the watch a mirror M is adjusted to

reflect an image of the watch into a telescope T. On the disk

Fig. 16.

a small bit of mirror, m, is so arranged that just at the equi-

librium position of the disk the field of the telescope is brightly

illuminated by light reflected from the lamp L. On placing the

eye at the telescope, there is seen an image of the stop watch

which is illuminated by a flash of light every time the disk

passes through its equilibrium position. With the disk vibrat-

ing, the motion of the second hand of the stop watch is atten-

tively followed through the telescope, and when the flash occurs

the watch is read to tenths of a second.

5. In the Method of Passages the value which would be

found for the period if a large number of vibrations were

counted is obtained from the actual observation of a much
smaller number. To fix the ideas, consider the case of the
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vibrating disk referred to in the preceding paragraph. Sup-

pose that the instant is observed at wliich a mark on the edge

of the disk swings through its position of rest, once at the be-

ginning and once at the end of twenty complete vibrations.

From these observations an approximate value for the period

can be calculated. Suppose that after a time the observations

are resumed and the instant noted at which the mark is again

passing through its position of rest— in the same direction as

when the two preceding passages were noted. Then the time

that elapsed between the first and last observations divided by

the approximate period already found gives approximately the

number of vibrations that occurred between those two obser-

vations. If, for example, this approximate number of vibra-

tions comes out 44.1, and if this value can be trusted within

0.3 of a vibration, then, since the number of vibrations that

really occurred was a whole number, the actual number of

vibrations was 44. Since the time that elapsed between the

first and last observations was longer than that between the

first and second, the time that elapsed can be trusted farther,

and it is, therefore, possible to obtain a closer approximation

to the period. After this more accurate value has been found,

a considerably longer time could be allowed to elapse and

another observation of a time of passage would give a still

more accurate value for the period. This method may be

made clearer by the following example: —

No. OF Obs. Time of Passage

Ih IG" 7.3"

1 17 5.9

1 18 50.6

1 23 36.6

1 45 51.8

Interval

(1.2) 58.6 s.

(1.3) 163.3 s.

(1.4) 449,3 s.

(1.5) 1784.5 s.

Approx. No. of

ViBS.

10 [counted]

163.3

5.86

449.3 _

5.832"

1784.5

-=27.86

5.835

: 77.04

: 305.83

Period

58.6

10

163.3

28

449.3

77

1784:5

306

= 5.86 s.

= 5.832 s.

= 5.835 s.

5.8317E
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In using this method it is essential that the time between

observations of passages be so chosen that the approximate

number of vibrations can be trusted within three or four tenths

of a vibration. It will be seen that the successive values ob-

tained for the period are more and more trustworthy, so that,

instead of finding the mean of these values, the last one of them

is to be used.

6. The Method of Middle Elongations is another method by

which it is possible, without counting the number of swings

that occur, to obtain for a period of vibration a value of con-

siderable accuracy. The accuracy attainable is somewhat

greater than by the method of passages, but the method of

middle elongations is applicable only when the period is long

enough to allow of recording two readings during each vibration.

The point of its path where a vibrating body changes the

direction of its motion is called its position of maximum
elongation. The mean of the times at wliich any two succes-

sive passages through the position of equilibrium take place

gives the tinae at which the elongation between tliem occurred.

If ten successive passages are observed, the mean of the times

of the fifth and sixth passages, or of the fourth and seventh,

or of the third and eighth, or of the second and ninth, or of

the first and tenth, gives the time at which the middle elonga-

tion of the series occurred.

For a concrete case consider a disk suspended at the end of a

wire about the axis of which it rotates. Suppose that a mark

on the edge of the disk is observed to pass through its position

of equilibrium at the times indicated in the table on the follow-

ing page.

Suppose that the first transits in the two series occurred

when the mark on the disk was moving in the same direction.

Then the elongations considered were on the same side of the

position of equilibrium, and during the 790.31 sec. between

these elongations a whole number of vibrations occurred. This

number of vibrations is not counted, but by subtracting the

time of the first transit from that of the ninth and dividing the
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First Series
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for the comparison of two. nearly equal periods of vibration.

Suppose the period of oscillation of a simple pendulum is to be

compared with that of a clock pendulum beating seconds. If

the simple pendulum swings slightly faster than the clock

pendulum, a moment will occur when both are at their lowest

points at the same time. But since the simple pendulum is all

the time gaining on the clock pendulum, after a certain inter-

val it will have gained a whole oscillation, and then both pen-

dulums will again be at their lowest points. If between two

such coincidences the clock pendulum has made n swings, then

the simple pendulum has made n + 1 swiiigs, and its time of

sec. Similarly, if the simple pendulumoscillation is
n + 1

were going slower than the clock pendulum, the time of oscil-

lation of the simple pendulum would be sec.
n— 1

One method of determining the instant of coincidence

employs an electric circuit containing the two pendulums,

a battery, and a telegraph sounder, all in

series as shown in Fig. 17. When the two

pendulums are in coincidence, they pass

through the mercury contacts A and B at

the same instant, and at this instant the

sounder clicks. It is to be kept in mind

that the n in the above expressions denotes

the number of swings made by the clock

pendulum— not by the simple pendulum.

Since one pendulum gains only slightly

on the other, and since the passage of the

pendulums through the mercury cups at A
and 5 is not instantaneous, there are often

clicks for several successive swings. The

mean time of the first and last of these suc-

cessive clicks is used as the instant of coincidence.

The actual instant of coincidence, i.e. the instant when each

pendulum is distant from its position of rest by the same frac-

FiG. 17.
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tion of a vibration that the other is, may occur when both pen-

dulums are in some position other than at their lowest points,

but it can never be more than half a swing from the lowest

point. If there are only a few successive clicks, it will be safe

to assume that in taking the mean of several successive clicks,

the time of coincidence is not in error by so much as one swing.

If the simple pendulum is swinging faster than the clock pen-

dulum, the error introduced into the value for the period by
getting for n one swing too few is the difference between the

period found, , and the true period, , viz.
n n+1
n— 1 n 1

n n + 1 n(n + 1)

If n is large compared with unity, the error is almost -.

Thus if w = 70, the error introduced into the period by an

error of 1 in the number of seconds between coincidence is

about — 0.0002 sec. If n is small, the accuracy may be in-

creased by counting the number of seconds to some later coin-

cidence instead of to the second. In this case one pendulum

will have gained on the other more than one swing, and the

above formulas must be modified accordingly.



CHAPTER III

LENGTH, AREA, ANGLE

Exp. 1. Determination of the Thickness of a Thin Plate by

Means of a Spherometer and an Optical Lever

Object and Theory op Experiment. — The object of this

experiment is to measure the thickness of a microscope cover

glass by two methods and to compare the precision of measure-

ment obtained by the two methods.

The spherometer has already been described. The theory

of the optical lever will now be developed. The optical lever

to be used in this experiment consists of a piece of sheet brass

about 3 cm. long and 1 cm. wide mounted upon four pointed

legs, one at each end and the other two midway between the end

legs and in a line normal to the line joining the latter. Fas-

tened on the upper side of the optical lever, with its reflect-

ing surface in the plane of the two middle legs, is a small

mirror. The length of the four legs may be such that when
the optical lever rests upon a piece of plate glass all four legs

are iu contact with the glass, or the end legs may be slightly

shortened so that the optical lever can be tilted forward and

backward about the ends of the middle legs. From the differ-

ence in the angle through which the optical lever can be tilted

when the middle legs rest directly upon a large plane surface,

and the angle through which it can be tilted when a thin plate

is interposed between the middle legs and the plane surface,

the thickness of the thin plate can be determined.

Let mna (Fig. 18) be the optical lever with its mirror

approximately normal to the base mn, T a telescope, and 0' 0"

42
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a vertical scale about a meter from the optical lever. First
assume that the ends of the feet of the lever are all in one
plane. Imagine the thin plate x placed under the middle feet

of the optical lever. W hen
the lever is tilted forward

an observer at the telescope

sees the point of the scale

at 0' reflected in the mir-

ror, and when the mirror

is tilted backward the re-

flected image of the scale

at 0" comes to the cross

hair of the telescope.

Meantime the optical lever

has been tilted through the

angle S. Consequently the angle between the normals to the

mirror in its two positions is also Q. And since the angle of

reflection equals the angle of incidence, the angle between 0' a
0' 0"

and 0"a' equals 2 6. When 6 is small, —^— =26 radians, and
, mm! . n

also = Q.

Fig. 18

mc
Consequently

2 mm'

Oa

mc
O'O'

Oa

Let the thickness of the thin plate be denoted by h, the dis-

tance mn between the two end feet by 2Z, the distance Oa
between the scale and mirror by L, and the difference between
the scale readings at 0' and 0" by S. Since e is midway be-

tween m and n, the distance mm' is twice the thickness h of

the plate. On substituting these letters in the above equation,

we get

*=^- (19)

This is for the case of an optical lever having the lower ends

of all four feet in one plane. But if the end feet are shortened

so that the lever is capable of being tilted enough to produce
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a deflection S' when placed upon a plane surface, the thickness

of the thin plate is given by

h = (^-^')K (20)
4 _Z>

The development of this equation is left as an exercise for the

student.

Manipulation and Computation. — In using the optical

lever, the telescope and scale must first be adjusted ; that is,

the telescope, the scale, and the mirror of the optical lever must

be placed in such relative positions that on looking through the

telescope a reflected image of the scale is seen. To make this

adjustment, place the scale vertical, facing the mirror, and

about a meter from it; standing behind the scale and looking

at the mirror, move the eye about until a reflected image of the

scale is seen; keeping the image of the scale in view, move
the scale and the eye toward each other until the telescope,

the eye, and the mirror are in the same vertical plane ; and

then, still keeping the image of the scale in view, move the eye

and telescope up or down toward each other until they come

to the same level. By sighting along the outside of the tele-

scope see that it is pointing at the mirror and then focalize—
first on the cross hairs and then on the scale— as is described

on p. 23. If the focalizing screw is turned so that the mirror

is clearly seen, the scale will not be visible. In order to bring

the scale into view the focalizing screw must be turned so as

to shorten the telescope tube somewhat.

With the optical lever on a piece of plate glass, adjust the

telescope and scale as above directed, and observe the scale

reading in the telescope when the optical lever is tilted forward

and when it is tilted back. The difference between these two

readings is S' . Now place under the middle legs of the optical

lever the plate the thickness of which is to be measured and

take two similar readings. The difference between these read-

ings is S. L may be measured with a meter stick, and I is best

obtained from the measurement of the distance between prick-
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marks made by pressing the feet of the optical lever on a sheet

of paper.

In using the spJierow-eter, determine first the zero point by
placing the instrument on a piece of plate glass and noting the

readings on the two scales when the point of the screw just

touches the glass. Raise the screw, place under it the thin

plate whose thickness is to be measured, lower the screw until

it just touches the thin plate, and note the readings on the two
scales. The difference between the readings with and without

the plate gives the thickness of the latter.

Make five determinations by each method and compare the

two methods as to accuracy.

Exp. 2. Determination of the Radius of Curvature of a

Spherical Surface

Object and Theory of Experiment.— There are three

principal methods for determining the radius of curvature of a

spherical surface. They are by means of (a) the spherometer,

(6) the optical lever, (c) the reflection of light. The last

method is applicable only to highly polished surfaces, and its

consideration will be delayed until the subject of light is taken

up. The object of this experiment is to determine the radius

of curvature of a spherical surface by means of the spherome-

ter and by means of the optical lever, and to compare the two

methods as to accuracy. The theory of the two

methods will now be considered.

(a) By means of the spherometer. — The curva-

ture of the surface is determined from the dimen-

sions of the spherometer and the distance through

which the point of the screw must be moved from ^
Yia. 19.

the plane of the ends of the three legs in order

that all four points may be brought into contact with the

spherical surface.

Let XYZ (Fig. 19) be the positions of the three fixed feet,

and F the position of the point of the screw, when all four are
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where

in one plane. Let the distances XF, YZ, and ZX be denoted

by a, b, and c. A proposition in Trigonometry states that the

radius of the circle circumscribing the triangle XYZ is

r = ^^"
(21)

4 Vs (s - a) (s — 5} (s - e)

Now consider a plane passing through one

of the feet of the spherometer Y (Fig. 20),

the point of the screw H, and the center of

curvature 0, of the surface whose radius is

required. Then if R is the required radius,

and h, when all four points are in contact with

the spherical surface, the height of the point

of the screw above the plane of the ends of

the three feet, we have, from Fig. 20,

Whence Jfi + r-^R
2A

On substituting in this equation the value tov r obtained from

(21), we have

(22)
7? =^ I .

2 32As(s-

2J2c2

a) (s— J)(s — e)

It should be noticed that in deriving this equation it has been

assumed that the axis of the screw is perpendicular to the plane

of the three feet of the spherometer, and also that when the

point of the screw and the three feet are in the same plane the

point of the screw is at the center of the circle circumscribing

the triangle formed by the three feet. Errors due to these

causes are, however, almost always so small as to be negligible.

If the distances between adjacent feet of the spherometer are

equal, that is, if we set 1= a = i = c, (22) becomes

^=2 + 61- (23)
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In practice a, b, and o will not be exactly equal, but often

they will be so nearly so that instead of using (22) it will be

permissible to substitute for I in (23) the mean of a, b, and c.

(6) By means of the optical lever. — Figs.

21 and 22, which are views at right angles

to one another, show the optical lever rest-

ing on the curved surface. The end points

of the lever touch the spherical surface at F
and Z), and the middle points at £ and H.

Let H represent the required radius of cur-

vature of the spherical surface, 2 1 the dis-

tance between the end points, and 2 b the

distance between the two middle points.

From Fig. 21,

whence 2 BCAO) = QA Of -h (CBf= iABf.

Similarly from Fig. 22,

2 i2(^^) = iARf.

If i_AB) is small compared with (AD), and (A^) small com-

pared with (^EE'), then (A-D) and (-4-H) will be approximately

equal respectively to I and b, and the above equations may be

^^itten 2 R^AB + BO) = P (24)

and 2RiAE) = b\ (25)

From the theory of the optical lever (p. 43) it has been seen

SQi^i'^-'^y. (20')

But AB in Fig. 21 equals AU in Fig. 22. On setting AB in

place of AB in (25) and then eliminating AB and BO from

(24), (25), and (20'), we obtain

_^^ .
(l + b)0-b) .26)

S-S' I
^ ^

where S and S' denote the respective deflections observed on

the scale of a telescope distant L from the optical lever (1) when



48 PRACTICAL PHYSICS

the lever is rocked back and forth on the object being measured,

and (2) when it is rooked on a plane.

Manipulation and Computation. — (a) When the sphe-

rometer is used, run the center point up out of the plane of the

other three, press the three outer points on a piece of bristol

board, and either by means of a glass scale laid face down on the

bristol board, or by means of a pair of sharp-pointed dividers

and a millimeter scale, measure the three sides of the triangle.

If the three sides are nearly equal, use the average for I.

Determine the zero point of the spherometer by placing the

instrument on a sheet of plate glass and noting the readings on

the two scales when the point of the screw just touches the

glass. Place the spherometer on the spherical surface whose

curvature is to be determined, and turn the screw down
until its point just touches the surface. Again read the two

scales of the instrument. The difference between this read-

ing and the zero reading is h. Substitute these values of I

and h in (23) and solve for M. Obtain the mean of five

values of It determined in this way from five sets of obser-

vations.

(/)) When the optical lever is used, press the end points of the

lever on a piece of bristol board and measure 2 1 either by means

of a glass scale laid face down on the bristol board, or by means

of a pair of sharp-pointed dividers and a millimeter scale. In the

same way measure 2 b. Place the lever on the curved surface,

and, exactly as described in the preceding experiment, adjust

a telescope and scale, measure L, and take readings to deter-

mine S and /S". Make five different sets of observations,

each time having the telescope and scale a few centimeters

farther from the optical lever. In each case find R by (26).

From the results obtained, compare the two methods as to

accuracy.

The spherometer is especially useful for finding the radius of

curvature of a surface of considerable extent, while the optical

lever is available for surfaces of limited extent and small

curvature.
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Exp. 3. Radius of Curvature and Sensitiveness of a Spirit Level

Object and Theory op Experiment. — In many measure-

ments in which a spirit level is used in connectionwith other phys-

ical apparatus it is necessary that the sensitiveness of the level

be at least as great as that of the other apparatus. An example

is the case of the telescope and level of an engineer's transit.

When used in leveling or in measuring vertical angles, the

least vertical motion of the telescope which can be detected by
means of the cross hair should also make itself evident by a

displacement of the level bubble. A test of the suitability of

a level for a particular use includes the determination of the

uniformity of the run of the bubble in the vial and the sensi-

tiveness of the spirit level. The sensitiveness of a spirit level

may be defined as the distance the bubble moves for an inclina-

tion of the level of one minute. Since the sensitiveness can be

Fig. 23.

proven to be directly proportional to the radius of curvature of

the vial, it is often designated by the radius of curvature. The

object of this experiment is to make a test of a spirit level.

In the laboratory a spirit level is usually tested by means of

a Level Trier consisting of a base plate upon which rests a

^-shaped casting supported by two projecting steel points H
and F (Fig. 23) at the end of the arms of the T and a mi-

crometer screw M at the foot of the T. The pitch of the

micrometer screw must be measured and also the perpendicular

distance from the micrometer screw to the line connecting the

points U and F. The level to be tested, L, is placed on the

T and the position of the bubble in the vial is noted by means

of a scale engraved upon the glass or by a scale S attached to

the level trier. In case it is inconvenient to separate the level
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from a piece of apparatus of which it forms a part, the entire

apparatus, e.g. a telescope or theodolite, may be mounted in

the grooves ABC or BEF.
After the level tube is in place, the micrometer reading

is noted. The T is now tilted through a small angle

by turning the micrometer screw, and readings are again

taken of the micrometer screw and the position of the

bubble.

Suppose that by means of the micrometer screw the T of the

level trier is moved from the position FJ (Fig. 24) to the

position FJ' , the middle of the bubble moving meantime from

Cr to H. If a vertical line

GiK were drawn through Gi

before the micrometer screw

was turned,

and if this

line were to

move with

the level, it would after the movement

be in a position Gr'P, such that the

angle through which it moved would

equal the angle JFJ' through which the

level moved. A vertical line through

the middle of the bubble's position of

rest has the direction of a radius of the -pia. a.

bubble vial. If, then, MP is drawn

vertically through JT, both IFF and Cr'F are radii of the vial.

But since ITP and GrK are parallel, the angle Cr'PH equals

the angle between GK and Gr'P, which latter has just been

shown to equal JFJ' . It follows that

^GJPH=^JFJ'.

Let &'P be denoted by R, Q'R by d, FJ' by x, and JJ'

by y. Then

A
B
= 6 radians, (27)
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and, since the screw is always perpendicular to the T,

^ = tan^.
X

Since is always very small, tan 6 = 6, and we have almost

exactly
^.^y_
R • X

Whence R=^. (29)
y

Eliminating R from (27) and (29),

d ^xd
~6^T

Since one minute differs from the 3438th part of a radian by

less than 0.01 %, ^ can be reduced to minutes by multiplying it

by 3438. The sensitiveness is, therefore, from its definition

^^^""^ ^^ d xd
~ 3438 0~ 3438 «/ ^ ^

Manipulation and Computation.— Place the ^-shaped

casting upon a piece of bristol board, and by means of slight

pressure obtain an impression of the three supporting points.

Measure the perpendicular distance from the impression made
by the end of the micrometer screw to the line connecting the

impressions of the other two supporting points.

The pitch of the micrometer screw may be obtained in the

following manner : After placing the spirit level on the trier,

adjust the micrometer screw until one end of the bubble is

directly under a scale division near the middle of the vial;

then insert under the micrometer screw a small piece of plate

glass whose thickness has been already measured with a sphe-

rometer or micrometer caliper, and again adjust the micrometer

screw until the bubble rests at the same point as before. The

thickness of the glass plate divided by the necessary number

of turns of the micrometer screw gives the pitch of the latter.
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Again adjust the micrometer screw until one end of the

bubble is directly under a scale division near one end of the

vial. Observe the micrometer screw reading and the scale

readings at both ends of the bubble; rotate the micrometer

screw through a convenient number of spaces and take read-

ings as before. Continue this operation until the bubble has

been removed in some half dozen steps to the other end of its

run, and then return step by step in the same manner. Repeat

this series of readings three times. A series of such readings

may be conveniently tabulated in the following form :
—

N"LrMBER OF
Obsekvation
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Exp. 4. Verification of a Barometer Scale

Object and THEORy of Experiment. — In the ordinary

form of Fortin's barometer, the lower end of the tube dips into

a mercury reservoir wliich can be raised or lowered by a screw.

By this means, before taking an observation, the surface of

the mercury in the reservoir is always brought to the level of

the point of an ivory pin extending downward from the cover

of the reservoir. The barometric height is the length of the

mercury column from the bottom of this pin to the top of the

meniscus at the upper end of the col-

umn. A brass scale attached to the

metal case inclosing the barometer tube

is supposed to be adjusted so that its

divisions indicate distances measured

from the point of the ivory pin. The

object of this experiment is to measure

the barometric height by a cathetometer

and to compare with this height the

reading by the brass scale.

Manipulation and Computation.
— Set the cathetometer on a stand

about a meter distant from the ba-

rometer. After the cathetometer has

been adjusted as described on p. 23

raise the telescope until the horizontal

cross hair in the eyepiece is tangent to

the meniscus at the upper end of the

barometer column, and take the cathe-

tometer reading by means of the scale

and vernier. Lower the telescope until

the horizontal cross hair coincides with

the level of the mercury in the reser-

voir and again take the cathetometer reading. The difference

between these two readings is the barometric height.

Now, by means of the screw T (Fig. 25), at the bottom of

Figs. 25 and 26.
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the barometer, bring the surface of the mercury in the reser-

voir to the level of the ivory point P, and read the barometric

heightby means of the scale and vernier F(Fig. 26) attached to

the case. Attached to the sliding vernier there is a similar

piece of metal directly back of the barometer tube. These two

slides move together. In order to avoid parallax, the vernier

is moved up and down tntil the position is found where the

lower edge of the vernier, the upper surface of the meniscus,

and the lower edge of the rear slide are in line.

Find the error of adjustment by taking the difference be-

tween the mean of five determinations of the barometric height

by means of the barometer scale and the mean of five with the

cathetometer.

Exp. 5. Determination of the Correction Factor of a Planimeter

Object and Theory of Experiment.— A planimeter is a

direct-reading instrument which is used to determine the areas

of irregular figures on drawings. The correction factor of a

planimeter is that number— usually near unity— by which

the area read from the instru-

ment must be multiplied in

order to get the true area.

The object of this experiment

is to determine the correction

factor of a given planimeter.

Amsler's polar planimeter

(Fig. 2J) consists of two

arms, a tracer arm AC, and a

pole arm ^0, jointed at C.

The point U is fixed and the

point A is carried around the

boundary of the figure in

the direction of the hands of

a watch. Attached to the tracer arm is a small roller D, the

axis of which is parallel to the line AO. This roller and the
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points A and E are the only parts of the planimeter that touch

the paper. As the point A passes over the boundary of the

figure, the roller rotates unless the motion A is entirely in the

direction of AC,— in which case the roller slides. It will now
be proved that when the tracing point circumscribes any closed

plane figure which does not contain the pole point, the cir-

cumference of the roller rotates a distance proportional to

the area circumscribed by the tracing point. This proof will

be in four parts.

First, consider two concentric circular arcs AA" and A'A'"

(Fig. 28) cut by radii AE and A"E. Let the pole point of

the planimeter be fixed at the

center of these arcs, and let the

tracing point be moved along the

radius AE from Ato A' . Then
the roller will move from D to

D' while a point in its circum-

ference will rotate through the

distance BH. Again, let the

tracing point be moved along

the radius A"E from A" to A'",

causing the roller to move from

D" to D'" while a point on its

circumference rotates through

the distance I)"H'. Since the

shape and size of the figure

EB'HDA'A are the same whether the tracing point has moved

along the radius AE or along some other radius A"E, it follows

that I)"H' equals BE. Therefore, while the tracing point

passes over the portions of any radii intercepted between the

same two circles having the pole point E as center, the rolling

components of the motion of the roller are equal.

Second, let ECA (Fig. 29) represent the planimeter in one

position, and ECA' the planimeter in another position. Draw

EB and JB normal to AQ, and HB' normal to JB; also draw

EA, EB, and EB' . For brevity let 8^ denote the distance

Fig. 28.
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through which a point in tlie circumference of the roller moves

with reference to AO when A describes any line x.

Let the instrument start from the

position EGA, and, keeping the

angle EGA constant, rotate about E
through a small angle A@ into the

new position ECA'. AA! is, then,

the arc of a circle described about E
as center. The roller, meantime,

moves through a small distance DI>'

,

sliding through a distance SI)\ and

rolling through a distance DH. Whence

S^^. = I)S= BD' cos HDD' = ED A© • cos HDD'. (31)

Since HD is by construction normal to AQ, and the very small

arc DD' is normal to the radius ED, the angle HDD' equals

the angle BDE. And since BE is by construction normal

to^D,

,cos HDD'l= cos BDE^ =
ÊD

Equation (31) becomes, therefore,

S^^- = ^i> . A@ •^ = A® • BD. (32)ED
Now BD = BO- DO = EC- cos AOE- DC. (33)

And since in the triangle A OE,

{AEy = (Aoy + QEoy ~ 2 ac-eo- cos ace,

(33) may be written

BD =EC iAGy±(ECy-iAE^_j)Q_
2 AC -EC

Equation (32) becomes, therefore,

B^^, = Ae[^^<^y+(f^y-( -̂^-DO-]. (34)

For this particular case, then, where the tracing point moves

over the very small arc of a circle described about the j)ole
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point, S^^. is expressed in terms of the radius of this circle, the

dimensions of tlie instrument, and the very small angle sub-

tended by the given arc.

Third, let any figure KLMN (Fig. 30), not inclosing the

pole point, be cut into a large number of

very narrow strips by a series of circles

having E for center. Let these strips be

cut into very small areas by radii drawn

from E. Thus the entire figure is divided

into a great uumbeT of areas, each as small

as we choose. If the tracing point cir-

cumscribes in the clockwise direction one

of these small areas, ah' , we have, from

the first division of this proof.

And since S^j is described in the opposite

direction from that assumed in the second division of this

proof, the entire value of ^aib'a'a is equal to h^.a, — ^ab- Whence,

by (34),

_ ^p,[UO)^+(Ecy-QaEy
L ^AO

DO

^ AQ r

2AC\_
(aEy {a'Ey~\-

- A@(aE} 2 = 1. Ae CaE){aE) = l Qah-yiaE),But

and this last expression measures the area of the circular sector

ohE. In the same way iA© (a'E) ^ measures the area of the

circular sector a'b'E. So that

^ahb'a'a

area (obE^ — area {a'b'E) __ area (aS') .gg.

AC AO

In Fig. 29 the angle BBE was drawn acute. If this

angle is drawn obtuse, it will be seen that the roller then ro-

tates in the opposite direction. Calling rotation in this oppo-



58 PRACTICAL PHYSICS

site direction negative, and making the changes in sign involved

in the new figure, we find that (35) holds whether BBE is

acute or obtuse. That is, when the elementary area ah' is cir-

cumscribed by the tracing point, that area is given by the prod-

uct of the length of the tracer arm and the small distance

through which a point in the circumference of the roller has

rotated.

Fourth, let the tracing point move over the whole figure

KLMN (Fig. 30) in such a way as to traverse the boundary

once in a clockwise direction, and each of the radial lines and

circular arcs twice, once in each direction. By taking lines in

the proper order, this can be done without lifting the tracing

point from the paper. Describing these lines in the manner

indicated amounts to the same thing as going once in the clock-

wise direction around the whole figure ; it also amounts to the

same thing as going once in the clockwise direction around

each of the small areas into which the figure is divided. The
total value of S^ will then be

;;
_>rAarea (a6') _ area (KLMJV} /or\Oklmnk- 2^ -j^ -^ (.00)

This equation shows that when an area which does not contain

the pole point is circumscribed hy the tracing point, the area is

measured hy the product of the length of the tracer arm and the

distance through ivhich a point in the circumference of the roller

has rotated with reference to the tracer arm.

The dimensions of the planimeter are usually so selected that

the product of the length of the tracer arm by the circumfer-

ence of the roller is equal to ten square inches or a hundred

square centimeters. That is, they are so selected that if the

tracing point circumscribes an area of ten square inches or a

hundred square centimeters, as the case may be, the roller

rotates once. The circumference of the roller is then divided

into a hundred equal parts, and these by means of a vernier

(F", Fig. 27) can be read to tenths. The counting wheel B
indicates the whole number of revolutions of the roller.



LENGTH, AREA, ANGLE 59

In the practical use of a planimeter, the figure the area of

which is desired may be so large that it cannot be circumscribed

without placing the pole point inside it. In this case the area

may be determined as follows : —
If the angle ADE (Fig. 29) is a right angle, then BD is

zero, and, therefore, from (32), S^^, equals zero. That is, as A
moves about E in the circular arc AA' , tlie — — ».

roller slides, without rolling at all. The l

circle generated by the tracing point A
about the pole point E as center when the

/

roller does not rotate, and so makes no ;

record, is called the "zero" or "datum"
^

circle.

In Fig. 31 let RSW be this datum cir-
^^^- ^'^•

cle. Then if the tracing point were to circumscribe the area

TS, (85) shows that

;; _ area (2W)
"TUSRT— ~T-p ' (3')

and if now the tracing point were to circumscribe the rest of

the shaded area, then

;; _ shaded area ( UVT}
"TRwsavT xTy (38)

If these two paths were to be described successively, then, hj

adding (37) and (38), we find that

r, total shaded area
'TUSRTRWSnVT'- AO

In tracing this whole path, the lines US and RT have each

been described twice, once in each direction, so tliat the result-

ant motion of the roller produced by tracing them is zero, and,

since RSW is the datum circle, the roller did not rotate while

it was traced. It follows that if the tracing point had simply

described the perimeter TUVT, the roller would in the end

have turned from its first position just as much as it did while

the more complicated outline was being traced. That is, if

the tracing point were to describe the entire perimeter of the
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figure, the area indicated by the roller would be the area of

that part of the figure outside of the datum circle. If the trac-

ing point were ever to cross the boundary of the datum circle,

the roller would move in opposite directions before and after

crossing. From this it may be shown, if proper attention be

paid to the sign of the roller reading, that whenever the pole

point is inside of the figure circumscribed hy the tracing point, the

area actually circumscribed is greater than that indicated by the

roller, the difference being the area of the datum circle.

To sum up, if the tracing point circumscribe in the clockwise

direction any area, the difference between the final and initial

readings of the roller gives the area when the pole point lies out-

side the figure ; when the pole point lies inside the figure, the area

is obtained by adding to this difference the area of the datum
circle.

Equation (36) suggests at once a method of determining

the correction factor of a planimeter. If d denotes the diame-

ter of the roller, and I the length of the tracer arm AO, then

the area which can just be circumsci'ibed by the tracing point

while the roller rotates once is, by (36), equal to Trdl. If the

roller is so graduated that the area indicated for one rotation

is /, the correction factor K is given by

K='^. (39)

Manipulation and Computation. — With a steel scale

and a sharp pencil lay off a rectangular area of not less than 150

sq. cm. Make five careful readings of the length and breadth

of the rectangle. If the tracer arm is adjustable in length,

note the reading on its scale. Place the pole point outside

the rectangle, bring the tracing point to one corner, and read

the planimeter. Using the steel scale as a straightedge to

guide the tracing point, circumscribe the rectangle in the

clockwise direction, and again read the planimeter. In this

manner measure the area at least ten times. The product of

the average length and average breadth of the figure divided



LENGTH, AREA, ANGLE 61

by the average difference between the final and initial readings

of the planimeter gives the correction factor.

With a micrometer caliper determine the diameter of the

roller. With the steel scale make five readings of the length

of the tracer arm. From these calculate the correction factor

by (39). Compare the results obtained by the tv^o methods.

Exp. 6. Correction for Eccentricity in the Mounting of a

Divided Circle

Object and Theory of Experiment.— Angles are often

measured by means of "a divided circle and an index or vernier

attached to an arm capable of rotation about an axis passing

through the center of the circle. This method is subject to

a source of error due to the mechanical difficulty of mount-

ing the arm carrying the vernier so that its axis of rotation

accurately coincides with the normal axis of the divided circle.

The object of this experiment is to construct a correction curve

for a divided circle having an eccentrically mounted vernier.

Let Q (Fig. 32) be the center of the

divided circle, A and B the zero points of

the two verniers carried on arms capable

of rotation about the point D. If the line

AB passes through D, and I) coincides

with C, there is no eccentricity in the

mounting, and correct angular readings

are obtained by means of a single vernier.

But in the general case where neither of

these conditions is fulfilled, correct angular readings can be

obtained only from simultaneous readings of the two verniers

A and B.

Let A° and B° be the observed readings. Draw A^B-^

through G parallel to AB. If there were no eccentricity in

the mounting, and if A and B were diametrically opposite, the

readings would be A^ and B^. In other words, A^ and B^
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are the true readings corresponding to the observed readings

A° and B°. Through O draw the lines BU and AF.
Since A^Bj^ is parallel to AB, and ^(7 equals BO,

HOAi = Z OBA = ZBAC=ZAOAy
Therefore Z XOA^ = ^ (^ ^C'^ + ^XOA-),

or 4i° = K-^° + ^°)-

If the division lines on the circle are numbered as shown

in the figure, E° = B° — 180°. Consequently the corrected

reading of the vernier A is

A^° = 1 (4° +i?° - 180°). (40)

This is the corrected reading for the verhier giving the smaller

reading.

In precisely the same manner, since B-^ = ^(^B° + F°^ and

since F° = 180° + A°, the corrected reading of the vernier

B is

5i° = i(4° + -B°+180°). (41)

This is the corrected reading for the vernier giving the larger

reading.

In this manner, by means of two verniers, is obtained the

reading of either vernier corrected for eccentricity of mounting.

Manipulation and Computation.— Starting with one

vernier near the zero point of the circle, read both verniers.

Then move the verniers about thirty degrees and again read

them both. Repeat at intervals of about thirty degrees until

the entire circumference is traversed. The corrections for the

observed vernier readings are found by subtracting the observed

readings from the corrected readings.

On cross-section paper lay off the observed readings of one

vernier on the axis of abcissas and the corresponding correc-

tions on the axis of ordinates. The curve drawn through the

points thus obtained is the correction curve for this vernier.

From the form of this curve decide whether C and D are coin-

cident, and whether AB passes through B.



CHAPTER IV

VELOCITY AND ACCELERATION

Exp. 7. Determination of the Change of Speed of a Flywheel

during a Revolution

Object and Theory of Experiment.— For many purposes,

as when used to drive high-speed machinery, it is important that

throughout a revolution the angular speed of a flywheel shall

be nearly constant. The object of this experiment is to deter-

mine the angular speed and the acceleration of a flywheel at

different points in its revolution.

Attached to the shaft of the flywheel is a brass disk in the

edge of which thirty-six slots of equal width have been cut and

then filled to the edge with pieces of hard rubber. If one

terminal of an electric circuit including a chronograph be pressed

against. the edge of the disk, and the other against the revolving

shaft, then during each revolution of the flywheel the circuit

through the chronograph will be made and broken thirty-six

times. That is, at every 10° rotation of the flywheel a break

will be made in the record line on the chronograph drum. If

the flywheel revolves through equal angles in equal times, the

distances between notches in the record line will be equal.

Any irregularity of motion will thus be rendered apparent.

Manipulation and Computation. — Plot a curve with in-

tervals of time between any selected notch and the succeeding

notches as abscissas, and the corresponding angles of rotation as

ordinates. If the angular speed of the flywheel is uniform,

this curve will be a straight line.

If a straight line be drawn tangent to this curve at a point

corresponding to any particular time, the speed of the flywheel

63
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at that instant equals the tangent of the angle between this

tangent line and the axis of abscissas. In this manner compute

the speed of the flywheel at points 20° apart throughout an

entire revolution.

Construct a second curve by plotting times as abscissas and

speeds as ordinates. If a straight line be drawn tangent to this

second curve at a point corresponding to any particular time,

the acceleration of the flywheel at that instant equals the tangent

of the angle between this tangent line and the axis of abscissas.

Construct a third curve by plotting times as abscissas and

accelerations as ordinates. Carefully interpret each curve.

Exp. 8. Determination of the Speed of a Projectile by the

Ballistic Pendulum

Object and Theory op Experiment.— The object of this

experiment is to determine the speed of a bullet from a rifle.

Newton proved that if two bodies are moving along the same

straight line, the speed of the first with respect to the second

after a collision between the two is directly proportional to the

speed before the collision, the proportionality factor depending

upon the elasticity of the two bodies and being called the coef-

ficient of restitution of the given bodies. He also proved that

if no external forces act upon a system of bodies, the total

momentum of the system is constant.

Imagine that a projectile of mass m and speed u strikes a body

of mass M and speed U, and that after the impact the speeds

are u' and U' respectively. Then before impact the speed of

the projectile with respect to the other body is (u — V"), and

after impact it is (m' — CT"'). It follows, then, from the state-

ments in the preceding paragraph, that

u' - U' = e(iu- U) (42)

and mu' + MU' =mu + MU, i (43)

where e is the coefficient of restitution of the bodies. If the

bodies are perfectly elastic, e = 1, and if they are perfectly in-
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elastic, e= 0. If the experiment is so arranged that the initial

speed of the large mass is zero, and so that after the impact the

two masses move together, thus acting like inelastic bodies,

then ^7=0 and e = 0. On making these substitutions in (42)

and (43) and then eliminating u' between them, we get

\ m J
(44)

The conditions necessary to fulfill the requirements of this

equation are met by the use of the ballistic pendulum. This

consists (Fig. 33) of a block of wood so suspended that it can

swing freely about C as an axis. When a bullet strikes the

pendulum bob, the whole impulse may be used in giving to the

bob a motion of translation in the direc-

tion in which the bullet was moving, or

part of the impulse may be used in pro-

ducing torques which tend to set up wob-

bling motions that are not taken into

account in the above equations. If the

bullet strikes at a point called the center

of percussion, these torques are not pro-

duced. The center of percussion is at a

distance from the axis of rotation equal

to the length of the equivalent simple

pendulum, and when the masses of the supporting cords are

small compared with that of the bob, the lower end of this

equivalent simple pendulum is verj'- near the center of mass of

the bob.

If the angle through which the pendulum is deflected by the

impact of the bullet is denoted by d, the height through which

the center of mass of the pendulum is elevated by A, and the

distance from the axis of rotation to the center of percussion

by I, then h= l (1 — cos^). By the time the bullet has ceased

to move through the pendulum bob they both have a speed U'

,

and consequently kinetic energy equal to J (m+M) U''^- When
the end of the swing is reached, this kinetic energy has all been

Fig. 33.
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used ill lifting them through the distance h ; i.e. in doing work

equal to (m+M)gh.

Consequently ^(m+M} U''^= (m+M)gh.

Whence U' = ^2gh=^ 2gl(l-cose').

On substituting in (44) this value for V, we obtain

^^m+M^2gl(l-cose^. (45)m
Manipulation and Computation. — In setting up the

apparatus see that the line of flight of the bullet is horizontal,

that it is perpendicular to the axis of rotation of the pendulum,

and that it passes through the center of percussion of the

pendulum. Weigh the wooden plug in the center of the pen-

dulum bob both before and after the bullet is fired into it.

Weigh the rest of the bob, measure I, and observe 0.

Exp. g. The Acceleration Due to Gravity by Means of a

Simple Pendulum

Object and Theory of Experiment.— The object of this

experiment is, from measurements of the length and time of

oscillation of a simple pendulum, to find the value of the ac-

celeration due to gravity.

In elementary text-books on General Physics it is shown

that the period of a complete to-and-fro vibration of a simple

pendulum of length I vibrating through a small arc at a place

where the acceleration due to gravity is g, is very nearly

Whence g = (^Y^-

'

(46)

If the length of the pendulum is about 100 cm. and the

amplitude of vibration about 3 cm., the value that (46) gives

for g is about 0.01 % too small. This error is so slight that in



VELOCITY AND ACCELERATION 67

the above equations the approximation sign is omitted. More-
over, (46) is deduced on the assumption that the pendulum has

its mass concentrated at a point on the end of a perfectly

flexible suspension. An increase either in the size of the bob
or in the mass of the suspending wire increases the error intro-

duced by using the above equation.

If the length of the pendulum is

taken as the distance from the

supporting knife-edge to the cen-

ter of mass of the bob, and if this

distance is about 100 cm., and the

diameter of the bob about 3 cm.,

the value found for g is about

0.01 % too small. With the same
length of pendulum, if the mass

of the supporting wire is about 0.3

g. and the mass of the bob about

75 g., the value found for g is about

0.07 % too large.

Manipulation and Computa-
tion,— In finding the period of

oscillation of the experimental pen-

dulum by the method of coinci-

dences, the time of coincidence can

be observed by the electric method

described on p. 40, or by the opti-

cal method used by Borda.

In the apparatus for Borda's

method (Fig. 34), the experimen-

tal pendulum is suspended directly

in front of a clock pendulum.

Between the two pendulums is

a screen C containing a vertical slit. Attached to the bob of

the clock pendulum is a small mirror which produces an image

of a portion of the filament of an incandescent lamp placed at

one side of the two pendulums. This image is viewed with a

Fig. 34.
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telescope placed a meter or more from the clock. When the

axis of the telescope, the points of support of the two pendu-

lums, and the slit in the screen Care all in a plane perpendicular

to that in which the clock pendulum swings, a flash will be

seen in the telescope— if the lamp and mirror are properly ad-

justed— every time the clock pendulum passes its lowest point

except when the two pendulums are in coincidence.

To make this adjustment, set the experimental pendulum

swinging, and while looking through the slit in the direction

perpendicular to the screen, move the incandescent lamp until

a bright line of light fills the slit every time the clock pendulum

passes. Then place the telescope a meter or more from the

slit and in such a position that when the experimental pendulum

is deflected a bright flash is seen every time the clock pendulum

passes the slit, but when the experimental pendulum hangs at

rest no flash is seen.

If the slit in the screen C is too narrow— especially when
the periods of the two pendulums are almost the same— the

eclipse will last for several seconds. In this event, the time of

coincidence is the mean of the time of the beginning and the

time of the end of the eclipse. If the slit is too wide, no

eclipse will be seen, but only a dimming of the flash. Unless

the alignment of the two pendulums is better than is usually

attained, two eclipses will be observed within a few seconds of

each other, one on even-numbered seconds and the other on odd-

numbered seconds. The average time of these two eclipses is

very close to the true time at which the coincidence occurred.

Since the coincidences which occur when the two pendulums

are moving in opposite directions are more sharply marked

than those which occur when the two pendulums are moving

in the same direction, and since these two types of coincidence

alternate with each other, it is usually better to observe only

the coincidences when the pendulums are moving in opposite

directions, and pay no attention to the others.

When the apparatus is in adjustment, note the times at which

a series of coincidences occur. When the pendulums are swing-
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ing in opposite directions, and it is seen that a coincidence will

soon occur, note the hour and minute and begin counting

seconds. Keeping both eyes open, put one eye at the telescope

and by the flashes of light that are seen keep on counting

seconds. Record the hour, minute, and second every time that

a flash does not appear. Repeat about five times.

The calculation of the period is explained on p. 40. In mak-
ing this calculation it is necessary to know which pendulum
goes faster. To determine this, watch both pendulums for a

few moments immediately following a coincidence. It will

soon be evident that one of them reaches the end of its path

before the other, and is, therefore, the one that goes faster.

To determine the length of the pendulum, mount a cathe-

tometer in front of the experimental pendulilm, make the ad-

justment described on p. 23, and read the positions of the

knife edge, the top of the bob, and the bottom of the bob. For

the length of the pendulum use the distance from the knife

edge to the center of the bob. Make at least two determi-

nations—each time readjusting the cathetometer—and take

the mean.

Exp. 10. Determination of the Acceleration Due to Gravity

with a Compound Pendulum

Object and Theory op Experiment. — The method

described in the preceding experiment for determining the

acceleration due to gravity requires a clock for each person

who is to perform the experiment. If several students are to

make determinations at the same time, this would involve ex-

cessive cost of apparatus. In the following method only one

clock is needed, and, instead of flashes of light appearing at

every swing except when the pendulums are nearly in coinci-

dence, the flash appears only when the pendulums are nearly in

coincidence. The object of this experiment is to determine the

acceleration due to gravity by means of a compound pendulum.
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Fig. 35.

Let A be an axis about whicb a body £ is free to swing, and

be the center of mass of B. If £ is swinging back and forth

about A, at some instant the line A makes

with its equilibrium position an angle 0, and

if p denotes the distance from A to (7, and M
denotes the mass of JB, then the torque tend-

ing to restore B to its equilibrium position is

L = - Mgp sin 0,

the negative sign being used because the

torque and the displacement are in opposite

directions. If JST denotes the moment of

inertia of B about the axis ^, and a denotes

the angular acceleration with which B swings

through the indicated position, then we know that

It follows that

Kr = — Mpg sin 0,

or, if is small (see p. 7),

KsL=- Mpg0. (47)

Since a is proportional to 0, the motion is simple harmonic.

If T denotes the period of a complete to-and-fro vibration of a

body which is vibrating with simple harmonic motion, it is

shown in elementary dynamics that

a
From (47) it follows, then, that

T=2'
'Mpg

(48)

Now the moment of inertia of B is the sum of the moments
of inertia Ki of the n different parts of B. That is,

«=1 ... n

And if the masses of the different parts are Mj, if the centers of

mass of these various parts are at distances pj from the axis of
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rotation, and if the lines pj are all parallel to p, then from the

definition of center of mass we know that

Mp=^M^p^.
3 = 1 • n

(50)

On substituting in (48) the values of K and Mp from (49) and

(50), and writing in place of T its value 2 1, where t denotes the

time taken by a single oscillation, we get

=l-n

"Whence,

^=7
X^i

X^iPi
(51)

The pendulum to be used consists (Fig. 36)

of a stout piece of steel shafting P, which car-

ries at its upper end an adjustable collar to

which are fixed the knife edges on which the

pendulum swings. Project-

,
ing below the bottom of the

steel rod is a light vertical

plate O, in the middle of

which is a vertical slit. This

pendulum swings in front of

an incandescent lamp D, the

light from which can be seen

only through a vertical slit

in a sheet-iron jacket about

it. Electrically connected

with the clock pendulum is

a telegraph sounder which

i-s mounted with its arma-

ture vertical. Connected

with the armature is a light shutter B, in which is a vertical
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slit. When the sounder is actuated, this shutter moves just

far enough to bring its slit in line with another slit in a screen

A, mounted close to it on the base of the sounder.

When the pendulum is at rest, and the slits and the filament

of the lamp are all in line, a person looking through the screen

on the sounder sees a flash each second. When the pendulum

is swinging, no flash is seen unless the pendulum passes through

its position of equilibrium at the same instant that the current

from the clock passes through the sounder.

Since a seconds pendulum of the type described above would

be about a meter and a half long—that is, too long to deter-

mine its length conveniently with a cathetometer— the pendu-

lum used is a half-seconds pendulum. During the interval

between coincidences, then, the experimental pendulum makes

one swing more or less than twice the number made by the

seconds pendulum. That is, if the number of clicks between

coincidences is w, the number of oscillations made in the same

time by the experimental pendulum is 2 w ± 1, and its time of

oscillation is, therefore, sec. In general, if n clicks occur
2w±l

during the interval from any coincidence to the /th following

coincidence, the experimental pendulum makes j swings more

or less than twice the number made by the seconds pendu-

lum, and the time of oscillation of the experimental pendulum is

n
: sec.

2w ±^
When the clicks of the sounder are counted, it will often be

observed that there is a series of flashes on odd-numbered

clicks, and then very soon a series on even-numbered clicks,

after a time a series on odd clicks, and then very soon a series

on even clicks, and so on. If the apparatus were more accu-

rately adjusted, the odd and even sets of clicks would come

together instead of one after the other. The interval between

coincidences is, therefore, the interval from the middle of one

series of odd clicks to the middle of the following series of odd

clicks, or from the middle of one series of even clicks to the
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middle of the following series of even clicks, or from the middle

of the time between a series of odd and a series of even clicks

to the middle of the time between the following two series.

Manipulation and Computation.— Take the diameter of

the pendulum rod once with a micrometer caliper. Then see

that the pendulum is at rest with room enough to swing freely,

and with the knife edges perpendicular to the wall and the plate

parallel to the wall. With a cathetometer (p. 23) determine

the heights of the top of the rod, the knife edge, the bottom

of the rod, and the bottom of the plate. Make two sets of

determinations.

Adjust the position of the lamp and its jacket until the glow-

ing filament in the lamp is seen through the pendulum slit

when the eye is directly in front of the pendulum. Place the

sounder some 25 cm. or 30 cm. in front of the pendulum, and in

such a position that when the armature is held in its position

nearest the magnet, the filament in the lamp and the slits in

the jacket, pendulum, and sounder diaphragms are all in line.

Connect the sounder with the clock, and with the eye close to

the shutter watch to see if a flash occurs every time the sounder

clicks. Then set the pendulum . swinging with an amplitude

not much exceeding 1 cm., and with the eye again close to the

shutter watch for the flashes that indicate coincidences.

When a flash occurs, begin counting the clicks of the sounder

and record the number of each click on which a flash is seen;

or, if this is too difficult, count the alternate clicks of the

sounder, record the number of each counted click on which a

flash is seen, and pay no attention to flashes which occur on

clicks that are not counted. In one of these ways make at

least two sets of observations, each set running through the

times of four or eight series of flashes. If all clicks are

counted, the interval between coincidences can be obtained by

finding the interval from the middle of the first series of flashes

to the middle of the third series, or the interval from the

middle of the second series to the middle of the fourth, or,

better, the average of these two intervals. If only alternate
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clicks are counted, the second and fourtli series of flashes are

not recorded, but the interval from the middle of the first

series to the middle of the third series that was observed gives

twice the time between coincidences, and the interval from the

middle of the second observed series to the middle of the fourth

observed series also gives twice the time between coincidences.

It is to be noted that, if only the alternate clicks are counted,

the value for the interval should be doubled to reduce it to

seconds.

Whether the pendulum is swinging faster or slower than a

lialf-seconds pendulum may be determined by watching it for

a few moments at about the time when the clicks of the sounder

occur when the pendulum is at one end of its path.

The apparatus can be so designed that the moment of inertia

and mass of the collar may be neglected in comparison with

those of the rod, and, further, so that the moment of inertia of

the plate about an axis through its center of mass is neglible in

comparison with the moment of inertia of the rod ; that is, so

that the radius of gyration of the plate may be assumed to be

the distance from its center of mass to the axis of rotation.

The masses and moments of inertia to be taken into account

are, then, those of the rod and the plate. The masses will be

given by an instructor, and the moments of inertia are to be

calculated by the use of (6) and (2) on p. 111. These values

will complete the data necessary for the calculation of g by

means of (51).



CHAPTER V

FRICTION

If a body resting on a plane surface is acted upon by a force

parallel to the surface, the body does not start to move until

this force has reached a certain definite value. Moreover, the

force Fp which is necessary to start the body is directly propor-

tional to the force F^ which presses the two surfaces together.

That is, Fp = jj, #„, in which the constant jjl is called the coefficient

of static friction. When the body does start to move, the force

which is required to keep it moving uniformly is somewhat less

than the force that is needed to start it. And this force FJ
which is necessary to keep the body moving uniformly is also

directly proportional to the force F^ which presses the two sur-

faces together. That is, FJ = hF„, in which the constant b is

called the coefficient of kinetic friction. Since Fp is greater than

Fp', /J- is greater than b.

Exp. 11. Determination of the Coefficient of Friction between

Two Plane Surfaces

Object aistd Theory op Experiment. — The object of

this experiment is to determine the coefficient of friction

between two plane surfaces.

The apparatus consists of a horizontal plate having a small

pulley fastened at one end, and a block that can be drawn along

the length of the plate by means of a cord passing over the

pulley.

Since the pulley possesses friction, the weights on the cord do

not accurately represent the force required to overcome the

friction between the plate and the block. On this account the

75
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force #1 (Fig. 37) is greater than the force F^. The differ-

ence between these two forces (^^ — jP^) is a force /^ which

has to be applied along the circumference of the pulley in order

to start it. But this /^ is proportional to the force /2,— the

resultant of the two forces, F-^ and F^,,— which presses the pulley

against its bearings. That is, /p =fi^f^, where fi^^^ although not

the coefficient of static friction between the pulley and its bear-

ings, is a quantity proportional to that coefficient.

From Fig. 37,

F^^+F^^ = fi

Whence, ]• (52)

Since Fj, is less than F-^, the numerator of the quantity in

square brackets is less than the denominator. Since /ig cannot

^F"
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Since the quantity in square brackets is the same for all values

of Fp and ^j, it can be denoted by the single letter k and (53)

written in the abbreviated form

F^ = kF^.

The coefificient of static friction between the two surfaces is,

then,
'^ = S=X'"

^^^^

When the coefficient of kinetic friction is to be determined,

(53) must be modified by using in place of Fp, F^, A, and B,

the quantities FJ, F^', A', and B', where the primed symbols

have the same meanings as the unprimed, except that the

primed are taken when the bodies are moving uniformly instead

of when they are just starting.

Manipulation and Computation.— After cleaning the

block and the surface of the plate and making the plate hori-

zontal with the aid of a spirit level, place the block near one

end and add weights to the pan until the block on being started

keeps in uniform motion. Make not less than five determina-

tions with different weights on the block. Carefully clean the

plate and block before each observation. For each case calcu-

late the coefficient of kinetic friction. Having thus determined

the actual forces Fp necessary to keep the block in uniform

motion when it is pressed against the plate with various forces

F„, plot a curve showing, the relation between the two. This

curve should be very nearly a straight line, and, if the normal

forces, F„, are plotted as abscissas, (54) shows that the tangent

of the slope gives the coefficient of friction. Determine the

tangent of the slope and see how the result checks with the

mean of the previous results.

Exp. 12. The Friction of a Belt on a Pulley

Object and Theory of Experiment. — The object of

this experiment is to determine the coefficients of static and

kinetic friction between a belt and a pulley.
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Let UCrllJ repvesbnt the portion of the belt in contact with

the pulley whose center is C. On account of the friction be-

tween the two surfaces, the tension

of the belt will vary all along the

length in contact with the pulley.

When the belt is just on the point

of slipping, let the tensions at the

ends of the arc GS subtending the

indefinitely small angle A@ be de-

noted by / and /'- Let F and F'

represent the tensions of the belt

where it leaves the pulley.

By compounding the forces/and

/'— which are approximately equal because A® is very small

— it is found that, the normal force against the pulley due to

the element of the belt GS is equal to

^ n, 180° -A® „ ., . A© . .,.^2/ cos^ = 2/' sin—- =/'A©.

Therefore when the belt and pulley are in equilibrium, and the

belt is just on the point of slipping, the coefficient of static

friction is f —f
^ f'AB

Whence, Z. = i _ ^A0,

or log,/- log,/'= log, (1 - /xA@).

Expanding into a series the right side of this equation,

log,/- log,/ = - /.A© - J- (yuA@)2 - 1 (/.A@)3 - etc.

But when A® is chosen very small, its second and higher pow-

ers become negligible in comparison with its first power, and

we may write , j., i j. . » ^^log,/'-log,/=M@-

If we write expressions like the above for all the elementary

arcs that the belt touches, and then write the sum of the left

members equal to the sum of the right members, we get

log,#'-log,J?'=/.0.
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Whence, ,. = log, F' - log,F
^ ^55^

in which the angle @ is measured in radians.

The reason for not using the approximation sign in the last

two equations is this: Approximations have been made in

two places, and in each one the approximate value approaches

the true value when A@ approaches zero. That is, in the

limit, when A® = 0, these last two equations hold exactly.

In precisely the same manner is obtained the coefficient of

kinetic friction

j^^log,F"-log,F^
(56)@ •

where F and F" are the tensions of the belt where it leaves the

pulley, when the belt is slipping at a uniform rate.

Manipulation and Computation. — Stretch the belt over

a pulley that can be rotated by means of a crank. To one end

of the belt apply a 10 lb. weight and to the other end a verti-

cally hanging spring balance whose lower end is fastened to

the floor. Now turn the crank so as to carry the belt away
from the spring balance until the belt is just on the point of

slipping. The spring balance reading plus the weight of the

balance is now F', F=10 lbs. weight, and @=180° = 7r ra-

dians. Consequently a value of fi can be computed. Repeat,

making F successively equal to 20, 30, etc., pounds weight,

until the limit of the spring balance is reached. The mean of

the values of
fj,

thus obtained is to be taken as the coefficient

of static friction between the belt and the pulley. Determine

this coefficient for both the flesh side and hair side of the belt.

When the pulley is rotated until the belt slips and then the

speed of rotation is kept constant, the spring balance reading is

F", while, as before, F equals the weight acting on the other

end of the belt, and © equals ir radians. From these values b

is computed.



80 PRACTICAL PHYSICS

Exp. 13. Determination of the Coefficient of Friction between

a Lubricated Journal and its Bearings

(GOLDEN'S METHOD)

Object and Theory of Experiment.— The object of this

experiment is to determine the coefficient of kinetic friction

between a cylindrical jour-

nal and its bearings for dif-

ferent loads, speeds, and

temperatures. The Golden

Bearing and Oil Testing

Dynamometer consists of a

spindle passing through a

bearing B (Fig. 40), form-

ing part of a yoke Q. The
spindle can be rotated at

various speeds by means of

a motor, and the yoke can

be weighted by means of

adjustable masses M' and

M" . As the spindle is ro-

tated the friction between

it and the bearing tends to

rotate the yoke also. This tendency to turn is measured by

the spring dynamometer D, which is essentially a spring

balance. For the testing of oils at different temperatures, the

collar A is cored in such a way that a stream of water or steam

can be passed through it and the temperature of the bearing

determined by means of a thermometer T.

If r be the radius of the shaft and F the total force of fric-

tion tangential to the surface of the shaft, the turning moment
resulting from the friction of the shaft and bearing is Fr. If

/ represents the force, having a lever arm I, required to keep

the yoke from turning (Fig. 41), the resisting torque isfl. If

the center of mass of the yoke with its appendages is vertically

Fig. 40.
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below the axis of rotation of the shaft, then when the shaft is

rotating and the yoke is held steady,

Fr=fl.

If the total weight on the bearing surface due to the yoke

and its accessories together with the masses M' and M" be

denoted by P, then the coefficient of

kinetic friction

P Pr

If the surface of contact between

the journal and bearing be projected

upon a horizontal plane, and if the

area of this projection be denoted

by A, then the pressure on the bearing is

P

It follows that

Fig. 41.

pAr
(57)

Manipulation and Computation. — Measure (I + r) and

2r with calipers and scale. Find the area A of the projection,

on a horizontal plane, of the surface of contact between the

journal and bearing.

After cleaning the journals and bearing with benzine, lubri-

cate with the assigned oil and apply small and nearly equal

loads to the ends of the arms of the yoke. The difference be-

tween these two loads should be sufficient to develop a turn-

ing moment due to gravity slightly greater than that due

to friction. Start the motor and by means of the spring

dynamometer D measure the tendency of the yoke to turn.

Reverse the direction of rotations and take another dyna-

mometer reading. By this operation the pull developed by

the friction between the shaft and bearing is first added to

the pull on the dynamometer due to the excess weight on one
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end of the yoke, and then subtracted from it. The difference

between the two dynamometer readings is 2/. The data are

now at hand for computing the coefficient oi kinetic friction

between the given surfaces lubricated by the assigned oil, for

the particular speed, temperature, and pressure per unit area

of bearing surface, used in this determination.

Proceeding as above described and keeping the temperature

constant, determine, for a fixed speed of rotation s, the values of

b corresponding to a series of values of p. With these values

plot a curve coordinating b and p for the given speed and tem-

perature. Keeping the temperature fixed, now change the

speed of rotation and determine a new series of values of b and

p. Plot a curve coordinating these values on the same sheet

with the other. Proceeding thus, plot on the same sheet about

five curves for the same temperature but different speeds.

In the same manner obtain data for and construct on an-

other sheet of coordinate paper a series of curves showing the

relation between b and p for a given constant speed when the

temperature t is changed.

From the first set of curves construct another set coordinat-

ing b and s for different fixed values of p when the temperature

is constant. And from the second set of curves construct

another set coordinating b and t for different fixed values of p
when the speed is constant.

Care should be exercised that the direction of rotation of the

journal is frequently reversed, especially when the bearing is

heavily loaded, so as to avoid error due to inequality of the

wearing of the bearing.

Exp. 14. Determination of the Coefficient of Friction between

a Lubricated Journal and its Bearings

(THURSTON'S METHOD)

Object and Theoky op Experiment.— The object of this

experiment is to compare the lubricating properties of different
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oils from their relative effect in reducing the friction between a

journal and its bearings. The Thurston Oil Testing Machine

to be used in this experiment consists of a heavy pendulum

having at one end a bearing through which passes a horizontal

shaft capable of rotation. The bearings can be caused to exert

any given pressure on the journal by means of a heavy coiled

spring and adjusting screw, forming part of the pendulum.

When the shaft is rotated, the pendulum is deflected through an

angle determined by the moment of the tangential effort at the

Fig. 42. Fig. 43.

circumference of the journal and the moment of the weight of

the pendulum.

Let W represent the weight of the pendulum ; S, the expan-

sive force of the spring; J, the mean normal force between

journal and bearings; H, the distance from the axis of the

journal to the center of mass of the pendulum ; F, the tangen-

tial effort at the circumference of the journal— numerically

equal to the force of friction; r, the radius of the journal; I,

the length of the journal; and b, the coefficient of kinetic fric-

tion between the journal and its bearings.

If the pendulum is in equilibrium when deflected through an
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angle 6, the couple due to the forces FF at the circumference

of the journal equals the moment of the weight W. That is,

2Fr=WRsm 0.

Since the upper bearing exerts on the journal a force equal

to the sum of the weight of the pendulum and the expansive

force of the spring, while the lower bearing exerts a force due
only to the spring, the mean force between journal and bearing

is

j_ CW+S) + S^2S+W
2 2

Consequently the coefficient of kinetic friction between the

journal and bearings is

J
^^ -sin 0, (58)r{2S+W)

or b = k sin 0, (59)

where k represents the constant coefficient of sinO in (58).

This constant can be determined from a single series of care-

fully made measurements and used in any computation of b, so

long as the force exerted by the spring is unchanged.

Manipulation and Computation. — Measure the diameter

2 r of the journal with a pair of calipers. Obtain the weight Woi
the pendulum. Observe the angle on the divided arc attached

to the apparatus.

Place the coiled spring in a testing machine and measure the

forces required to produce given compressions. Plot a curve

coordinating forces and resulting compressions. From this

curve may be read off directly the force S corresponding to any

compression measured by a scale and vernier attached to the

side of the pendulum.

The distance M from the axis of the journal to the center of

mass of the pendulum can be determined as follows : While the

pendulum is still suspended from the shaft, support the free end

on a knife edge resting on the platform of a balance. (See

Fig. 43.) The product of the weight observed and the horizontal



FRICTION 85

distance L between the supporting knife edge and the center

of the shaft equals WR.
Compute the pressure on the journal. , Since the projection

of the journal surface equals 2(2 r)^, the pressure is

After cleaning the journal and bearings with benzine, lubricate

with one of the oils to be tested, apply a given force S to the

spring, set the shaft into motion, and observe the deflection 6

of the pendulum.

With the speed of rotation kept constant observe the deflec-

tions produced for several values of the force S. Repeat the

same series of observations when the other oils are used. Care-

fully clean the journal and bearings after each sample is

examined.

Plot for each specimen a curve coordinating the coefficient of

kinetic friction h and the force per unit area of bearing surface p.

The laws brought out by these curves should be carefully

discussed.



CHAPTER VI

MASS, DENSITY, SPECIFIC GRAVITY

Exp. 15. Calibration of a Set of Standard Masses

Object and Theory op Experiment.— In making a set of

standard masses it is impossible to get the mass of each piece

exactly right. Moreover, the handling of a set of masses, even

when carefully done with forceps, necessarily wears them a trifle.

In addition, some dust settles upon them, there may be chemical

action with vapors in the air, etc. It is consequently necessary

in accurate work to compare the masses with each other ; and

where absolute weighings are to be made, the masses in the set

must be more or less indirectly compared with the ultimate stand-

ard. The object of this experiment is to compare the masses

of the various members of a set and to construct a table of

corrections.

The method employed is by means of a sensitive balance to

find the differences between masses or groups of masses supposed

to be equal, from these results to form as many separate equa-

tions as there have been weighings performed, and from these

equations to find the masses of the different pieces in terms of

some convenient unit. In this experiment the unit of compari-

son will be the mass of one of the standards in the set being

calibrated.

Consider a set consisting of a 10-mg. rider, eight aluminium

or platinum masses ranging from 10 mg. to 500 mg., and nine

brass masses ranging from 1 g. to 100 g. Call the mass of the

rider /•, the masses of the fractional gram pieces respectively

lOj, 20i, 2O2, SOp lOOj, 200^, 2OO2, SOOj, and the masses of the

brass pieces respectively ij, 2^, 2^, 5^, lOj, 20^, 2O2, 50^, 100^.

86
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First the position of rest is determined (a) when the balance is

unloaded and (6) when r is at the 1-mark on the beam. These

observations give with sufficient accuracy the sensitiveness of

the balance for the first few small loads. 10^ is now placed on

one pan and r either on the other pan or at the 10-mark on

the other side of the beam. From the position of rest deter-

mined under these conditions, the position of rest of the unloaded

balance, and the sensitiveness of the balance the value of lOj in

terms of r can be calculated :
—

lOj = ?• + a^r = r(l + a{),

where the a^ is a small number which may be either positive or

negative.

20^ is now placed on one pan, 10^ on the other, and r either

on the pan with lOj or at the 10-mark on the beam. As in the

previous case, the value of 20j can be determined in terms of r

:

20i = lOj H- r -h a^r,

or, substituting for lOj its value from the preceding equation.

In the same way is obtained

202 = 10i-i-r -f-flgj-

= r(2+ a^ +a3).

Throughout the rest of the calibration the rider is kept on

the beam, and the sensitiveness is determined for each load.

With 50j in one pan and 20^, 2O2, and 10^ in the other, the po-

sition of rest and the sensitiveness are determined. This gives

the value of 50^ :
—
50i = 2O1 -I- 2O2 + lOj -I- a^r,

or substituting for lOj, 20j, and 2O2 their values from the above

equations,

50j = ?*(5 + Sai + a2+ a^+ a^").

In the same way

lOOi = 50i -f- 2O1 + 2O2 -I- lOj + a^r

= r(10 + 6aj^ + 2a^ + 2a^+ a^ + a^).
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200i = lOOj + 50^ + 20i + 2O2 + 10^ + a^r

= r(20 + terms involving fljj . . . ttg).

2OO2 = lOOi + 50i + 2O1 + 2O2 + 10^ + a^r

= r(2Q + terms involving aj . . . a^}.

500^ = 2OO1 + 2OO2 + 100^ + a^r

= r(50 + terms involving a^ . . . a^).

1^ = 5OO1 + 200^ + 2OO2 + lOOj + UgV

= r(100 + terms involving flSj . . . ag).

2i = 1 1 + 500i + 2OO1 + 2OO2 + lOOj + aio»-

= ?'(200 + terms involving «! . . . ajg).

22 = li + 500i + 2OO1 + 2OO2 + lOOi + a^jT

= r(200 + terms involving a^ . . . a^).

5^ = 2i + 22 + li + a^^r

etc.

In the above equation the a's are all experimentally observed,

so that if the mass of any one of the pieces in the set is known
in terms of the ultimate standard, then from the equation in-

volving the mass of that piece can be calculated the mass of the

rider. When the mass of the rider is known, the masses of all the

pieces in the set can be calculated from the respective equations.

Manipulation and Computation. — Perform the opera-

tions indicated above. Make all weighings by the method of

vibrations, and with the brass pieces use the method of double

\eighing. Assuming that the 100 g. mass is correct, determine

he masses of all the other pieces in terms of it. Record

t le results in a three-column table, putting in the first column

the symbol used to denote the particular mass considered, in the

second the value obtained for this mass, and in the third the

correction for the mass as obtained from (2).

DENSITY AND SPECIFIC GRAVITY

If a body of mass m occupies a volume v, then the average

density of the body is given by

i> = -• (61)
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From this expression it is seen that the number which ex-

presses a density depends upon the units in terms of which the

mass and volume are measured. For example, at 4°C. the

density of lead is about 708 pounds per cubic foot, or 2868

grains per cubic inch, or 11.34 grams per cubic centimeter.

Since density is a concrete quantity, the units in terms of which

the mass and volume of the body are measured must always

be stated. ' Since most bodies change their volume somewhat

with changes of temperature, the density of a substance depends

upon its temperature ; and so in accurate work the tempera-

ture at which a determination is made should always be stated.

The specific gravity or relative density of a substance is the

ratio of its density to the density of some standard substance.

In other words, the specific gravity of a body is the ratio of

its mass to that of an equal volume of a standard substance.

Specific gravity is thus a numerical ratio, an abstract number

which is independent of the units employed. For solids and

liquids, water at the temperature of its maximum density

(4° C. or 39° F.) is arbitrarily taken as the standard substance.

Since in the C.G.S. system of units the unit of mass is the

mass of a unit volume of water at the temperature of its maxi-

mum density, it follows that the density of a body in grams per

cubic centimeter is numerically equal to its specific gravity.

Exp. 16. Determination of the Density of a Solid by Measure-

ment and Weighing

Object and Theory of Experiment. — From (61) it will

be seen that the density of any solid could readily be determined

if a specimen of it could be obtained in a shape such that its

volume could easily be computed.

Manipulation and Computation. — The specimen to be

used is a cylinder. Measure its diameter with a micrometer cali-

per and its length with a vernier caliper (see pp. 17, 21) and cal-

culate the volume. Determine the mass by weighing, using the

method of vibrations (pp. 26-28). In order to get a very
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accurate value for the density it will be necessary to correct

the weighing by allowing for the buoyancy of the air. First,

without making this correction, divide the apparent mass by

the volume and so get an approximate value for the density.

Use this value in (14) to get the true mass of the cylinder.

Calculate the density by (61).

Exp. 17. Determination of the Density and Specific Gravity of

a Liquid with a Pyknometer

Object and Theory of Experiment. — The pyknometer

is essentially a small glass vessel of definite volume. Various

Fig. 44. Fio. 45. Fig. 46. Fig. 47.

forms suitable for determining the densities of liquid are given

in Figs. 44-48.

The pyknometers in Figs. 45 and 48 can be used only for

liquids, while the others can be used for either liquids or solids.

The most common form, that shown in Fig. 46, consists of a
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small bottle fitted -with a perforated glass stopper that always

comes accurately to a seat at the same point, so that the volume
of the bottle is definite when the stopper is in place. This form
is often called a specific gravity bottle.

The volume of the pyknometer is obtained

from two weighings, first when empty, and
second when filled with a liquid of known
density, e.g. water. If the mass of water

contained in the filled pyknometer is denoted

by My, and its density by /o„, then the vol-

ume is

M,„
v =

Fig. 48.

Now let the water be replaced by the speci-

men. If the mass of this second liquid filling the pyknometer

be denoted by M^ and its density by p^, then

_M,_M,p,
M„ (62)

Denoting the maximum density of water by S, we have for

the specific gravity of the specimen.

Sp. Gr. =^
M,p„

(63)

In the preceding equations no account has been taken of the

buoyant effect of the atmosphere on the liquids being weighed

and on the standard masses used in the weighing. In precise

determinations this source of error cannot be neglected. The
true weight of an object equals its apparent weight plus the

weight of air displaced by it. And when the balance is in

equilibrium, the apparent weight of the body equals the appar-

ent weight of the standard masses. So that when the specimen

is weighed in air, its true weight minus its loss of weight due to

the buoyancy of the air equals the true weight of the standard

masses minus their loss in weight. If the density of air is de-

noted by Pa and the density of the standard masses by /)j, this
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last statement says that when the pyknometer was filled with

the first liquid,

meter was fille^

'*>Ps
— vpa=]^B-

Pb

and when the pyknometer was filled with the second liquid,

M,Pa
_

Pb

On eliminating v from these equations, we obtain

p^=mh^+p^. (64)

Manipulation and Computation.— Weighing by the

method of vibrations, determine first the mass M^ of the empty

pyknometer ; second, the mass (^Mp+ My, ) of the pyknometer

filled with recently distilled water ; and, third, the mass

(iH^+ ilif^) of the pyknometer filled with the liquid in question.

Take the values of /}„ and p^ from tables.

Each time before filling the pyknometer, clean it by rinsing

successively with nitric acid, distilled water, and alcohol, and

then dry it by putting into it the end of a tube connected to an

exhaust pump. Be sure that there are no air bubbles in the

pyknometer, that the outside is dry, that the stopper is in place,

and that the liquid fills the capillary tube in the stopper. In

order to avoid changes in volume due to changes in tempera-

ture, avoid touching the filled bottle with the bare hand.

Exp. 18. Determination of the Density and Specific Gravity

of a Solid with a Pyknometer

Object and Theory of Experiment. — The object of this

experiment is to determine the density and the specific gravity

of a solid in small pieces.

Three suitable forms of pyknometer have already been illus-

trated (Figs. 44, 46, 47). To determine the volume of a solid

by means of a pyknometer, four weighings are made : first,

when the pyknometer is empty ; second, after the specimen
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has been introduced ; third, after the rest of the space in the

pyknometer has been filled with water or other liquid; and,

fourth, after the pyknometer has been emptied and then filled

with the same liquid used in the third weighing.

Let the mass of the pyknometer be denoted by TUfp, that of the

specimen by M^, that of the water which fills the pyknometer
by My,, and that of the water which was used with the speci-

men by m„. Then if the mass found in the wth weighing
is denoted by iff,„

ilfj = M^, (65)

M^ = Mj, + M,, (66)

Ms = M^ + M,+m„, (67)

M, = Mp + M^. (68)

The mass of the water which displaces the specimen is

(il!f^ — m„), and from (67) and (68),

M^-m^= [M, - M^-] - [Ms - (ilf^ + iff,)]

.

Substituting in this equation the values of Mp and (^Mp + Jf,)

from (65) and (66),

^« - m^ = (^4- ^i) - (M% - ^2)

= (ilf2+ilf4)-(ilfi + ilf3).

If py, denotes the density of the water used, the volume of the

water which displaces the specimen, and therefore the volume

of the specimen, is

^ AM.. + M,-)-CM,^M,^
Pw

Now the density of the specimen is

M, M„ - M,

V V

On eliminating v from the last two equations, we get

P'
CM, + M,-)-(M^ + Ms-)

"^ ^
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If 8 denotes the maximum density of water, it follows that the

specific gravity of the specimen is

This method is capable of very accurate results. In precise

measurements account must be taken of the buoyant effect of

the air on the specimen and on the standard masses used in

the weighing. The true weight of an object equals its appar-

ent weight plus the weight of the air displaced by it. When
the balance is in equilibrium, the apparent weight of the body

equals the apparent weight of the standard masses. Conse-

quently, when the specimen is weighed in air, its true weight

diminished by its loss in weight due to the buoyancy of the air,

equals the true weight of the standard masses diminished by

their loss in weight. If the density of air is denoted by p^ and

the density of the standard masses by /a^, this last statement

says that

VPs - vpa = if, -

Pi>

In the same way considering the water which displaced the

specimen,

vp. - vp, = (Jf„ - m„) _ (^«>-^»>a
.

Pb

On eliminating v from the last two equations, we get

or, substituting for M, and (^M^—m^) their values in terms of

the masses actually observed.

This gives the density at f, the temperature at which the

fexperiment was performed. If 7 denotes the coefficient of
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cubical expansion of the specimen, then its density at 0° is

given by

{M.-M.Xp.-Pa^ + PJ (1 + 70 (72)
.(lf2 + iJf4)-(ifi + if3) n

The development of (72) from (71) is left as an exercise for

the student.

Manipulation and Computation. —Make all weighings

hy the method of vibrations. Observe the precautions that

are suggested in the last paragraph under Experiment 17.

Exp. 19. Determination of the Density and Specific Gravity

of a Solid by Immersion

Object and Theory op Experiment.— The object of this

experiment is to determine the density and specific gravity, of

a solid of irregular form.

Since a solid body immersed in a liquid is acted upon by an up-

thrust equal to the weight of the liquid displaced by the body,

it follows that if this upthrust is measured, the weight of the

displaced liquid is known, and if the weight of a unit volume

of the liquid is also known, then the volume of the liquid dis-

placed— and, therefore, the volume of the body — can be cal-

culated. If the weight of the body in air is denoted by Ba,

and its weight when immersed in the liquid by Bi, then the up-

thrust of the liquid— and, consequently, the weight of the

liquid displaced— is Ba — -B;. So that, if w denotes the weight

of a unit volume of the liquid at the temperature of the experi-

ment, the volume of the liquid displaced— and, consequently,

the volume of the body— is

z> = ^"~-^'
- (73)

w

It follows, if m denotes the mass of the specimen, that the den-

sitjr of the specimen is

m _ mw _ B„pi .y ..

f'- v-B^-B.-JSa-B: ^ ^

the last equation in (71) being true because m= Ba/ff and w= p,g.
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Since specific gravity is defined as the ratio of the density of

the substance in question to the maximum density, B, of water,

Sp. Gr. .^aPl
(75)

When the body is lighter than the liquid in which it is to be

immersed, a sinker is attached. Weighings are made to deter-

mine : first, the weight of the body in air, B^, ; second, the

weight of the sinker immersed in the liquid, S, ; and third,

the weight of the two together when immersed, (5 + S)/- The
weight of the body alone when immersed in the liquid is nega-

tive, but its value, sign included, is

and this value can be substituted in (74) and (75), giving

^'"^,-(^ + ;S'), + ^,
*^^^^

Aft (77)
'

B

Manipulation and Computation. — The liquid in which

the body is immersed must be one which will not dissolve the

body, act upon it chemically, nor cause it to change its volume.

Whenever possible, use is made of water which has been freed

of dissolved gases by boiling. If the liquid contains dissolved

gases, bubbles will collect on the immersed body, causing an

increased upward thrust, and therefore an error in the result.

Water should be boiled for about half an hour and then cooled

to the temperature at which the experiment is performed. As

water slowly dissolves air, it must be boiled on the day it is

used.

The motion of the balance beam is so much damped by the

immersion of the load in a liquid that it is useless to weigh by

the method of vibrations. The values of pi and B are to be

taken from tables.
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Exp. 20. Determination of the Density of a Solid or Liquid

with Jolly's Spring Balance

Object and Theory of Experiment.— The Jolly spring

balance is especially suited to the determination of the densities

of liquids and of solid bodies of small mass. The essential part

of the instrument is a spiral spring which hangs vertically and

carries at its lower end a weight pan. If the

limit of elasticity is not passed, any increase in

the length of this spring is proportional to the

force which is applied to it. In Lin charger's

form of the instrument (Fig. 49) the spring is

supported by two vertical telescoping tubes.

The inner tube can be adjusted up or down by

turning the milled head D. To the lower end

of the spring is attached an index J, consisting

of a double cross of aluminium, half of which is

painted black. This index hangs inside a short

length of glass tubing which is whitened on the

back, and which carries on its inside surface a

horizontal black hair line. This line serves as

a zero, to which the line separating the black-

ened from the unpainted part of the index may
be brought^ To the lower end of the index is at-

tached a thin wire supporting two pans W and

0. If, after the index has been brought to the

zero mark, a body be placed on one of these

pans, the index can again be brought to the

zero mark by adjusting the height of the inner

supporting tube A. On this tube is engraved

a millimeter scale, which, by means of a vernier

at Fj can be read to tenths of millimeters. The

difference between the reading at Fwhen one of the scale pans

is loaded and when not loaded gives the elongation of the spring

due to the weight of the body- When the body does not weigh

\B

w/

Pig. 49.
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more than about 5 g., accurate results are possible with this

method.

In the case of a solid that will sink in a given liquid of

known density, the lower pan is submerged, and, after the in-

dex has been brought to the zero line and the reading at V
noted, the specimen is placed in the upper pan and the elonga-

tion of the spring, b^, necessary to bring the index back to the

zero line, is determined. The specimen is then placed on the

submerged pan and the new elongation, J^, is found.

Since 6„ is proportional to the weight of the specimen in air,

and bi is proportional to the weighls of the specimen when sub-

merged in the liquid, (74) and (75) can be put in the forms

and Sp.Gr.[=|]=^^, (79)

where Pi is the density of the given liquid and S is the maximum
density of water.

.In the case of a solid that floats in the given liquid,

a sinker must be attached. With the apparatus arranged

as before, let the elongation of the spring when the speci-

men is in the upper pan be represented by ba, the elonga-

tion when the sinker alone is in the submerged pan be

represented by s„ and the elongation when the specimen

and sinker are tied together and are in the submerged pan by

(b+ s')i. Since these elongations are proportional to the forces

which produce them, (76) and (77) can be put in the forms

p r= ^ 1= ^-^ (80)

and Sp. Gr. [=^'1=77 77^^^^^
r^- (81)

In determining the specific gravity of a liquid by this method

a sinker that is unaffected by water and by the given liquid is

weighed in air, in water, and in the liquid whose specific gravity
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is required. If the elongations of the spring when the sinker

is in the air, in water at 4° C, and in the given liquid, are de-

noted respectively by s„, s„, and S;, it is easily shown that the

specific gravity of the liquid is given by

Sp. Gr.=?5LZiL. (82)

If the temperature of the water is t° instead of 4°, the right

member of (82) is to be multiplied by the specific gravity of

water at t°.

Manipulation and Computation.— In determining each

elongation it is necessary to make a reading of the scale at

V before the spring is extended, as well as afterward. The
suspended system must hang free without touching either the

glass tube around the index or the beaker containing the liquid,

and the submerged part of the suspended system must be kept

free from air bubbles and always submerged to the same depth.

The upper pan and its contents must be kept dry. After im-

mersion in any liquid, the sinker, specimen, and scale pan should

be carefully dried with filter paper.

Exp. 21. Determination of the Specific Gravity of a Liquid

with the Mohr-Westphal Balance

Object and Theory op Experiment.— The object of this

experiment is to determine the specific gravity of an aqueous

solution by means of a Mohr-Westphal balance.

From Archimedes' principle it follows that if a body of

constant volume be immersed in various liquids, the corre-

sponding losses of weight sustained by the body will represent

the weights of equal volumes of the various liquids. Whence,

if a body of volume v, when immersed in succession in two

liquids, of densities p^ and p^, sustain the respective losses of

weight Wj and w^i then

'^^^M^Pl. (83)
Wa '"P29 Pi
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If the second liquid be water at the temperature of its maximum
density, then the ratio of w^ to w^ gives the specific gravity of

the first liquid.

If, therefore, a means be devised for measuring the loss of

weight of a given body when immersed in any liquid, and also

for determining what loss the same body would suffer if it were

immersed in water at 4° C, the specific gravity of the liquid

could be computed by means of the above equation.

A convenient instru-

ment designed for the'

purpose is the Mohr-

Westphal balance.

This device (Fig. 50)

consists of a decimally

divided balance beam
at one end of which

is suspended a glass

sinker for immersion.

The other end of the

beam is so counterbal-

anced that the beam is

held in equilibrium

when the sinker is

surrounded by air.

The instrument is also

provided with five

riders which are ordi-

narily equal in mass to

1.0, 1.0, 0.1, 0.01, and

0.001 of the mass of water displaced by the sinker. Thus,

if the sinker be immersed in water, one unit rider placed

at the end of the beam would be required to compen-

sate for the loss sustained by the sinker and to bring the

beam back to a horizontal position. Again, if with the sinker

immersed in a certain liquid the beam is brought into a hori-

zontal position when a unit rider is hung on the hook A^ the

Fig. 50.
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teaths rider on the second notch C, and the hundredths rider

on the third notch B, the theory of moments of forces show-

that the upthrust on the sinker is 1.023 times as great as in the

preceding case. Consequently the specific gravity of the given

liquid is 1.023.

If, as the temperature rose, tlie sinker were to expand at

the same rate that water does, the temperature at which the

Mohr-Westphal balance is used would make no difference, for

the sinker would always displace the same mass of water.

But, as a matter of fact, at ordinary room temperatures water

expands more rapidly than glass, so that when the temperature

is a little above 20° C. the Mohr-Westphal balance reads 0.1 %
lower than it would at 15°. Moreover, the temperature in a

laboratory is usually not so low as 4° C, and so the riders are

usually adjusted to read specific gravities with reference to

water at 15°— about the temperature at which European

laboratories are usually kept. In order to use the balance

in a laboratory at about 20° and to get specific gravities with

reference to water at 4° it will then be necessary to apply a

correction.

To find what this correction is, let h-^^ and l^ denote the re-

spective readings of the balance when the sinker is immersed,

(1) in water of density pu at 15°, and (2) in the liquid whose

density pt at f is desired, and let w^j and v^ denote the respec-

tive volumes of the sinker. Then the weights of liquid dis-

placed by the sinker in the two cases are respectively pi^v-^^g

and pfVtff- Since the readings of the balance are proportional

to these weights,

-K'*i5 = Pui^u9 = Pi&^o9 (1 + 7 • 15) (84)

and Kbt = p^Viff = ptV^g (1 -f yt), (85)

where v„ denotes the volume of the sinker at 0° and 7 its coeffi-

cient of expansion. On dividing (85) by (84), we obtain

ht _, ft(l + 7t)

hs Pi5(l + 7 15)"
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Whence, since the balance is so adjusted that Sjg = 1,

or, employing approximation (5), p. 7,

or, employing approximation (2), p. 7,

pt=Pi,h\y-^(t~lb-)-]. (86)

If the specific gravity of the liquid is desired, we have at once,

if S denotes the maximum density of water,

Sp. Gr. [= |]= ^[1- 7(« - 15)]

.

(87)

Since 7 is small and pjg differs only slightly from S, it will

be seen that if only fairly accurate values are desired, (86) and

(87) give very nearly

Pt= ^it (88)

and Sp. Gr.=6,. (89)

Manipulation and Computation. — With the sinker in

air and no rider on the beam, the instrument is first leveled

until the pointer attached to the beam indicates zero. The

sinker is then immersed in the liquid whose specific gravity is

to be determined, and riders are placed in the notches on the

beam until the pointer again indicates zero.

Exp. 22. Calibration of an Hydrometer of Variable Immersion

Object and Theory op Experiment. — In the measure-

ment of the specific gravity of liquids for technical purposes

where great accuracy is unnecessary, some form of hydrometer

of variable immersion is usually employed. The hydrometer

(Fig. 51) consists of a closed graduated glass tube of uniform

cross section with a weighted bulb on the lower end. The
mass and volume of the instrument are so chosen that when
it is placed in the liquid whose specific gravity is to be deter-

mined it will float upright. The specific gravity of the liquid
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I
»

I,.

is shown by the depth to which the hydrometer sinks. If the

graduations on the stem are so spaced and numbered as to give

directly the density of the liquid, the instrument

is called a densimeter. Often, however, the gradu-

ations are equidistant and are referred to some
arbitrary scale. Thus we have the scales of

Baume, Beck, Cartier, and Twaddell. The specific

gravities corresponding to readings on these vari-

ous scales are given in Table 6. Not infrequently

the stem of the hydrometer contains two or more
scales. When graduated with especial reference

to use with some particular class of liquids, the hy-

drometer is called the alcoholimeter, salinimeter, etc.

A calibration curve for any instrument is a curve

in which the actual readings of the instrument are

plotted against the readings that the instrument

ought to give. The object of this exercise is to

calibrate an hydrometer.

(a~) Scale with divisions of equal length. If an liydrom-

eter of mass m sinks to scale division d-^ when placed in

a liquid of density /j^, and to division d^ when placed

in a liquid of density p^, then by Archimedes' principle the

volume of the first liquid displaced is — and of the second is

m Pi
—. If u denotes the volume of that part of the stem which is

P2

included between two consecutive scale divisions, then

Fig. 61.

mm .-,— = uQdj^-

P2 Pi

C?2).

Whence u=-

or P2 =

m(p,. - Pi)

PiP2i<^i - '^%)
'

m — Pi^'id^—d^

(90)

(91)

From (90), if p^, p^, and m are known, the value of u can be

found, and from (91), if u, p^, and m are known, p^ can be

found.
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If the maximum density of water is denoted by S, the spe-

cific gravity of the second liquid is

Sp. Gr.
S

mPx
Im-pjuidi-d^-)}^

'

(92)

(6) Scale in which the successive divisions express equal dif-

ferences in density. Consider a wooden rod of mass m, of

uniform cross section q, and so loaded at one end that it will

float upright. When the rod floats, the weight of liquid dis-

placed is by Archimedes' principle equal to the weight of the

rod. That is, if the rod sinks a distance l^ in a liquid

of density pj,

PihW = ing-

r- Whence
?i
=—

.

(93)
< Pii

K-
r

\J

Fig. 52.

I
Similarly, if the rod sinks a distance l^ in a liquid

I

of density p^i

i h=~- (94)
! Pa?

f
Dividing (93) by (94),

I ^ = £2. (95)

I
h Pi

That is, the distances to which this hydrometer

of uniform cross section sinks in various liquids

are inversely proportional to the densities of those liquids.

Consider now an hydrometer of the usual form, which is not

of uniform cross section throughout, but which is of uniform

cross section above some point JT (Fig. 52). For this hydrom-

eter there is at some unknown distance x below IC a point

to which the hydrometer would extend if it had still the same

mass and volume which it really has, but if, instead of the

varying cross section which it really has, it continued through-

out with the same cross section which it has above JBT. Sup-

pose that in one liquid this hydrometer sinks to a point distant
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hi above K, and in another liquid to a point distant h^ above

K. Then from (95),

L^2 JK + - Pi

or V2 - ^iPi
,

(96)

(97)

Sp. Gr.

(98)

(99)

P1-P2
If the subscript 2 is dropped, (96) gives

If the maximum density of water is denoted by B the specific

gravity of the liquid is, then,

_P~]_ Pi(^i+a:)
Sj S(A+a;)

Thus if we determine to what distance above K the hydrom-

eter sinks in each of two liquids of known densities, we can

by (97) determine x. And if we know to what distance above

^the hydrometer sinks in one liquid of known density, and

know also x, then if we determine to what distance above K the

hydrometer sinks in any other liquid, we can by (99) determine

the specific gravity of that liquid.

Uniformity of cross section of the hydrometer may be tested

by reading diameters at various points with a micrometer cali-

per. If the cross section is not uniform above IC, the above

method of calibration is not applicable. In this

dozen or twenty solutions having densities

varying somewhat uniformly within the

range of the hydrometer should be made

up, the density of each determined, and

the reading of the hydrometer in each

taken. This method of calibration is, of

course, accurate, but is more tedious than

the other.

Manipulation and Computation.— The surface of the

liquid about an hydrometer is usually of a shape similar to that

in Fig. 53. AB is the stem of the hydrometer and CD is a tall

case some

Fig. 53.
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narrow jar in which the liquid is placed. First be sure that

the hydrometer is floating freely, and then place the eye below

the level of the liquid surface and raise it until it is sighting

the hydrometer along the dotted line. The point of the scale

crossed by this line is the required reading. The temperature

of the liquid should be noted at the time of each observation.

When changing from one liquid to another, the jar, hydrome-

ter, and thermometer are to be thoroughly washed and dried.

Determine the densities of two liquids either with a pyknometer

or with a Mohr-Westphal balance. Observe the scale readings

on the hydrometer when it is floated in turn in the two liquids.

(a) If the hydrometer has a scale with equal divisions, weigh

the instrument, place it in succession in two liquids of known
densities, and then bymeans of (90) calculate the value of u. By
means of (92) calculate the specific gravity corresponding to

each of the numbered scale divisions on the stem of the hydrome-

ter. Plot a curve with these calculated specific gravities as

abscissas and the corresponding scale readings as ordinates.

This is the calibration curve of the instrument. The calibra-

tion curve should be checked by comparing two or three values

obtained by means of the hydrometer in connection with the

curve, with values obtained by means of a pyknometer or a

Mohr-Westphal balance.

(5) In the case of the densimeter or direct-reading hydrome-

ter, lay a steel scale along the stem of the hydrometer and read

the steel scale at each numbered division on the hydrometer.

In addition, read the steel scale at the points to which the

hydrometer sank when floated in the two liquids whose densi-

ties were previously determined. From these last two readings

and the densities already determined, and taking K as any con-

venient point, calculate x by (97). Knowing x and the distances

from K to the various hydrometer divisions, use (99) to deter-

mine what the hydrometer readings ought to be at the various

points along its scale.

The quantity which has to be added to a reading in order to

obtain the corrected reading is called the correction for that
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reading. Plot both a correction curve, coordinating the read-

ings of the hydrometer and the corrections to be applied, and
a calibration curve, coordinating the actual readings with the

corrected readings.

The observations and results should be arranged in a table,

somewhat as follows :—
Hydrometer
Reading Steel Scale

Reading

Distance
aBOTE K h + x

Specific Gravity

.g_ Pi(^'i + a')

a(A + X)

Correction

Exp. 23. Determination of the Relative Densities of Gases

with Bunsen's Effusiometer

Object and Theory of Experiment. —The object of this

experiment is to determine the ratio of the density of a gas to

the density of air or hydrogen. The density of a gas might be

determined by weighing a large bulb of known volume, first

when quite empty, and then filled with the gas under investiga-

tion. But on account of the difficulty in completely evacuating

the bulb before the first weighing, and in obtaining an accurate

value of the mass of gas contained in the bulb at the time of the

second weighing, this method requires unusual care and many
precautions.

Consider a gas of density p^ inclosed in a vessel at a pressure

of p dynes per sq. cm. above that of the surrounding atmosphere.

If there be a small opening of area a in the vessel, then the gas

will escape into the atmosphere at some speed s^ cm. per sec.

That is, in one second there will issue from the opening a column

of gas of length gj cm. and cross section a sq. cm. Conse-

quently the mass of gas that escapes per second through the
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opening is pias^ grams, and the kinetic energy of this mass is

Again, since the gas in the vessel is under a pressure exceeding

that of the surrounding atmosphere by jo dynes per sq. cm., it

follows that the force producing the flow is pa. Consequently

the work done on the escaping gas in one second is pas^^. This

is the loss of potential energy of the gas in the vessel. Since

the loss of potential energy equals the gain in kinetic, it follows

that

Therefore the speed of efflux of the escaping gas is

Pi

(100)

Similarly, if a second gas of density p^ is allowed to escape

through the same opening under the same difference of pressure,

its speed of efflux is

F2

Dividing (101) by (100),

F2
~

«i' ~ ^2'

(101)

(102)

Fig. 54.

where t-^ and fg ^-re the times required for equal

volumes of the two gases to effuse through the

same opening.

That is, when under the same conditions as to

pressure, the densities of two gases are inversely

^ proportional to the squares of their speeds of

effusion, and are directly proportional to the

squares of the times required for equal volumes to effuse through

the same orifice.

This is the principle of Bunsen's Effusiometer. The apparatus

(Fig. 54) consists of a glass tube open at the bottom and sur-

mounted by an enlargement containing a diaphragm D pierced

with a small opening about 0.01 mm. in diameter. This tube
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is inserted in a larger vessel containing mercury. The gas

under investigation is inclosed in the tube and the time noted

that is required for a certain volume of gas to effuse through

the diaphragm. is a three-way cock by means of which the

gas holder can be put into direct communication with the

atmosphere, or with the orifice in the diaphragm, or can be

closed entirelj'^. ^ is a float for indicating the change in vol-

ume of the gas, and »S' is a stopper.

Manipulation and Computation.— If the ratio of the

density of a gas to the density of air is to be determined, put

the gas holder into direct connection with the atmosphere by

means of the three-way cock (7, and then, by raising the gas

holder, fill it with air. Close the stopcock, depress the gas

holder, and clamp it into position. Next remove the stopper

and turn the three-way cock so as to connect the gas holder

with the diaphragm D. As the gas effuses through the dia-

phragm, observe the interval of time between the instant when
the upper point P of the float arrives in the plane of the upper

surface of the mercury in the well, and the instant when the

mark at M on the float reaches the same level.

Now empty the gas holder and fill it with the other gas. De-

press the gas holder as far as possible while it is in direct

communication with the atmosphere. This will expel most of

the air. Connect with the gas being examined and elevate the

gas holder. This operation will fill the gas holder. By
repeatedly refilling and emptying the gas holder, it will become

practically freed of air and filled with a specimen of the gas

whose density is sought.

Proceeding as in the case of air, find the interval of time

between the instant when the apex of the float appears above

the surface of the mercury in the well and the instant when the

mark at M appears. The times required for equal volume of

the two gases under the same pressure to effuse through the

same opening have now been obtained. Their relative density

can, therefore, be calculated by (102).



CHAPTER VII

MOMENT OF INERTIA

That property of matter in virtue of which a force from out-

side must act upon a body in order that either the speed of the

body or the direction in which it is moving may be changed is

called inertia. Similarly, that property of matter in virtue of

which a torque from outside must act upon a body in order

that either the angular speed of the body or the axis about

which it is rotating may be changed is called moment of inertia.

The inertia of a body is numerically equal to the sum of the

masses of its component particles. The moment of inertia of a

body can be shown to be numerically equal to the sum of the

products of the masses of the particles composing the body and

the squares of their respective distances from the axis of

rotation, i.e..,

K=^mr^. (103)

When a resultant torque is applied to a body there is produced

an angular acceleration a numerically equal to the ratio of

the applied torque L to the moment of inertia K of the body,

i.e.,

a=^. (104)

The moment of inertia of a body of simple geometric form

can be computed, but the moment of inertia of an irregularly

shaped body may often be determined most easily by experi-

ment. The experimental determination is usually made by

comparison with a body whose moment of inertia can be com-

puted. The computations for a few simple cases are effected

as indicated in the following table :—

•

110
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No.
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Fig. 56.

2. Let the diagram (Fig. 66) be a section normal to the

axis, A the section of the axis about which rotation occurs,

the section of a parallel axis, and .ff^ the

moment of inertia about the required axis.

Consider a particle of mass m at P. Tlien

^A = ^mr„^ = '^mlCp — ly + W]

= ^mp^ — ^2mpl+ X'k(P + ^^))

or, since p is independent of the particle

considered,

^A =p'^'^m— 2p'^ml+ '^mr^ = Mp^ — 2p^ml + K^.

By a proposition in elementary dynamics, '^ml = when the axis

through passes through the center of mass. Therefore,

K^ = K, + Mp\ (106)

3. Imagine the cylinder to be made up of n thin hollow cylin-

ders one inside of another. Denote the density of the material

by /3, the length of the cylinder by I, the thickness of each hollow

cylinder by t, and the respective mass and moment of inertia of

the ith hollow cylinder, beginning at the center, by m^ and ^

.

Then
mi = ir^ifyHp — 'ir{i — V)HHp

= TTtHpi^ i-l')=A(2i- 1),

where A is used in place of wtHp. The moment of inertia of

this z'th hollow cylinder is greater than the product of its mass

by the square of its inner radius and is less than the product of

its mass by the square of its outer radius. That is,

A(2 i - 1)a - lyt^ <Ki<A(2i- V)v^t\

The moment of inertia of the whole cylinder ^is the sum of the

moments of inertia of the elementary hollow cylinders. That is,

'^{A(2i-V)(ii-^yf^}<K<^{A(2i-l)Pt^},

or,

At^'^ (2 f - 5 «2 + 4.i-V)<K< At^'^(2 i^ - i^}.

»=i-
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On summing the series indicated in this last pair of inequalities

and substituting for A its value ir^lp, we get

iTlpW(nty - \{ntft +KwO«^] < ^< T^/sEK'^O* + f(»*0^*

or, since nt = r,

jrlpd r^-^r^t + l H^) <K< irlpQ r^ + ^rH-l H^}.

The difference between the third and first members in this last

pair of inequalities is ^'7rlpr(^4:r^—t^^t, a quantity which, by-

choosing t small enough, can be made less than any assigned

quantity. It follows that the value of IC is the common limit

approached by these first and last members when t approaches

zero. That is, if d denotes the diameter of the cylinder,

D = ^Trlpr^=lMr^ = ^Md^ (107)

4. Apply (3) and (2) on p. 111.

5. Imagine the cylinder cut into n thin laminae by planes

normal to the axis of the cylinder. If m is the mass of one of

these laminse, then by (107) the moment of inertia of that

lamina about its geometric axis is ^ md^. If the thickness t of

the lamina were indefinitely small, then, from the symmetry of

the figure, the moment of inertia of the lamina about any

diameter would equal its moment of inertia about any other

diameter, and therefore, by (105), its moment of inertia about

any diameter would be ^^g md^.

Consider now the moment of inertia ^ of the ith lamina

from one end of the cylinder when the axis of rotation is a

diameter of that end of the cylinder. One side of this lamina

is at a distance (i — 1)^ from the end of the cylinder and the

other at a distance it from the end. The moment of inertia of

the lamina is greater than it would be if all the material in the

lamina were compressed into a thinner lamina at a distance

(i — 1)^ from the end, and is less than it would be if all the

material in the lamina were compressed into a thinner lamina

at a distance it from the end. From (106) it follows that

^ md^ + m(i- lyt^ <Ki< Jg mdP + mt^t^.
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The moment of inertia of the whole cylinder K is the sum
of the moments of inertia of the elementary laminse. That is,

a=l-Bll6 J !=1-Kllb

or '^ + t'^X(i-iy <K<m
1=1 • n

Whence, on summing the series,

16 i=l ••• n

16" + ^
I"

< K<m 'nd? ^ .J2 n^+Bn^ + n
j^ + t^

6

or remembering that nm = M, the mass of the cylinder, and that

nt = I, the length of the cylinder,

Jg Md^+^MC2 P- 3 lt+ t^)<K< Jg- Md^+ 1 M(^2 P+ 3 It+f^).

The difference between the third and first members of this

last pair of inequalities is Mlt, a quantity which, by choosing

t small enough, can be made less than any assigned quantity.

It follows that the value of jK'is the common limit approached

by these first and last members when t approaches zero. That

is, if d denotes the diameter of the cylinder.

K=M
16

"^'3 (108)

6. Imagine the given cylinder to consist of two equal cylin-

ders set end to end. Then the length, diameter, mass, and mo-

ment of inertia of the given cylinder are respectively V = 21,

d' = d,M' = 2 M, and K' = 2K. Substituting in (108),

K' M'\d^ l^

16 12
(109)

7. Let p denote the density of the material composing the

cylinder, dg and df its outer and inner diameters, I its length,

M„ and Kg the mass and moment of inertia which the cylinder

would have if it were solid, M^ and ^ the mass and moment
of inertia of the inner part of the solid cylinder that has been
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removed in order to leave the hollow cylinder of mass M and

moment of inertia K. Then, by (107),

= \iM„-M>,W+dr)
=\MW + d,^y (110)

Exp. 24. Determination of the Moment of Inertia of a

Rigid Body

Object and Theory of Experiment. — The object of

this experiment is to determine a moment of inertia.

In any case where a body can be set into torsional vibration

about the axis about which the moment of inertia is required,

it is a simple matter to determine

experimentally the moment of inertia

of the body. From (141) it follows

that if a body is suspended so that

it can vibrate torsionally, its moment
of inertia is proportional to the square

of its period of vibration. That is, if

the proportionality factor is called k,

Ky = kT^\ (111)

If a mass of known moment of

inertia K^ be added to the body

above considered, we have

K, + K, = ]cT^^ (112)

where 2^12 is the new period of vibration of the system.

Eliminating k between (111) and (112),

Fig. 57.

K, m 2
-^12

rp2 (113).

Manipulation and Computation. — A convenient form

of apparatus for this experiment consists (Fig. 57) of two
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horizontal disks connected by three thin vertical rods.

From the center of the upper disk rises a short spindle for

attachment to the supporting torsion wire. The body whose

moment of inertia is required can be placed on the lower disk

in such a position that the line about which its moment of

inertia is to be determined coincides with the axis of the sup-

porting wire. The positions of the masses MM are then ad-

justed until the axis of vibration of the system passes through

the center of the two disks. Below the vibrating system is a

device by means of which the apparatus can be set into tor-

sional vibration with very little swinging motion.

Find the period of vibration, 2j, of the apparatus ; then add

a body of known moment of inertia, K^, and find the new
period of vibration, T-^^. From (113) the moment of inertia of

the apparatus is

Now substitute for the body of known moment of inertia the

body whose moment of inertia is required, and find the period

of vibration as before. If this period be denoted by ^^g, then

the moment of inertia K^ of the body under investigation is by

(113) .

or, substituting the value of K^ from (114),

-^3 =-^2

In finding the various periods of vibration, first with the

apparatus at rest set the pointer P directly in front of one of

the three vertical rods. Then set the apparatus into torsional

vibration with an amplitude of perhaps 90°. At some instant

when the vertical rod passes the pointer start a stop watch.

Count some ten or fifteen complete vibrations and stop the

watch. After recording the time that has elapsed, again at the

instant of a passage start the watch. After some ten minutes.
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during which time no attention has been paid to the vibrating

system, stop tlie watch at an instant of passage. Calculate the

period by the Method of Passages, given on pp. 36-38.

Take all the required linear dimensions with a vernier caliper

and make all weighings with a balance of moderate sensibility.

Calculate K^ as indicated on p. 111. Determine K^ both by

(115) and as indicated on p. Ill, and see how the values check.



CHAPTER VIII

ELASTICITY

When a body is perfectly elastic, a given deforming force

keeps it distorted to the same extent no matter for how long a

time the force is applied. This means that the distortion calls

into play a restoring force which, so long as the body is at rest,

is exactly equal and opposite to the deforming force. It fol-

lows that, when the deforming force is removed, this restoring

force causes the body completely to recover its original shape

and size. When a body is imperfectly elastic, a given deform-

ing force produces a gradual yielding so that the restoring

force which the distortion calls into play is in this case not

quite equal to the deforming force. It follows that when the

deforming force is removed from a body which is imperfectly

elastic, the body does not completely recover its original shape

and size. It is said to have received a permanent set, or to

have been deformed beyond its elastic limit. So long as any

body is not deformed beyond its elastic limit it is perfectly

elastic.

The ratio of a force to the area on which it acts is called a

stress. The ratio of a deformation to the original value of the

length, volume, or whatever has been deformed, is called a

strain. When a body has not passed its elastic limit, the ratio

of the restoring stress to the strain which produced it is constant

and is called a coefficient of elasticity. Since forces applied to

a body in different ways produce different types of deformation,

there are various coefficients of elasticity.

If a wire is stretched or a pillar shortened by a load applied

118
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to it, the strain is the change of length divided by the original

length. In this case the ratio of the stress to the strain is

called the tensile coefficient of elasticity or Young''s modulus.

If a toy balloon were fastened under water and then pressure

applied to the water, the balloon would decrease in volume with-

out changing its shape. In this case the strain is the change in

volume divided by the original volume, and the corresponding

coefficient of elasticity is called the hulk modulus.
' If a rectangular parallelopiped of rubber ac (Fig. 58) has two
opposite faces glued to two boards, and if one of these boards

is pushed sideways in its own plane, there is no change in the

volume of the block but its shape is changed to fgcd. In this

case the strain is the ratio of af to

ad, and is called a shear or a shearing

strain. If F is the force applied, and

A the area of the face ah, then F
divided by A is called a shearing -^^^ gg

stress. If the block of rubber is very

thin in a direction normal to the paper, and if it is bent around

until ad coincides with he, it is seen that a shear is the kind of

strain involved in the twisting of a wire about its geometric

axis. The ratio of a shearing stress to the shearing strain which

it produces is called the simple rigidity or the slide modulus of

the material sheared.

Exp. 26. Determination of the Elastic Limit, Tenacity, and

Brittleness of a Wire

Object akd Theory of Experiment.— The elastic limit

of a material is the stress beyond which the material cannot go

without becoming permanently set. Since it is found that the

curve showing the relation of a stress to the strain which it

produces is a straight line until the elastic limit is reached,

the elastic limit is the stress corresponding to the point on the

stress-strain diagram where the curve departs from being a

straight line. The tenacity or tensile strength of a material is
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the greatest longitudinal stress it can bear without rupture.

The brittleness of a material is the ratio of its elastic limit to

its tenacity ; in other words, it is the ratio of the force just

sufficient to produce permanent set to the force just sufficient

to produce rupture. The object of this experiment is to plot a

curve showing the relation between the longitudinal stress and

strain of a wire, to determine from this curve the elastic limit

of the . material composing the wire, and also to determine its

tenacity and brittleness.

Manipulation and Computation. — Arrange a wire verti-

cally so that it cannot twist, with one end fastened to a rigid

bracket and the other end attached to a scale pan. Place on

the supporting bracket, directly above the wire, a number of

iron masses whose aggregate weight exceeds the breaking

strength of the wire. Focus the cross hairs of the telescope of

a cathetometer, or the cross hairs of a microscope containing an

eyepiece micrometer, on a well-defined mark on the lower end

of the wire, and take the reading. Take a weight off the

supporting bracket, place it on the scale pan, and take a new
reading of the position of the fiducial mark. Continue chang-

ing weights from the supporting bracket to the scale pan and

taking the corresponding readings until the wire breaks. On
coordinate paper plot the stresses applied to the wire as

abscissas, and the strains produced as ordinates. The sti-ess

corresponding to the point where the curve departs from being

a right line and bends toward the vertical axis is the elastic

limit. The tenacity is the .breaking weight divided by the

area of cross section of the wire, and the brittleness is the

elastic limit divided by the tenacity.

Exp. 26. Determination of the Tensile Coefficient of Elasticity,

or Young's Modulus

(FIRST METHOD, BY STBETCHING)

Object and Theory of Experiment.— From the definition

of Young's modulus (p. 119), it follows that if L denotes the
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length of a wire, d its diameter, and e the elongation produced

by a force F, then the Young's modulus of the material compos-

ing the wire is

E 4:F e

T
4FL
ird^e

(116)

If the force is measured in dynes and the*

other quantities in centimeters, the value of

E will be in dynes per sq. cm. The object

of this experiment is to determine the value

of Young's modulus for a metal in the form

of a wire.

Of the quantities which have to be meas-

ured, the only one that it is difficult to get

with moderate accuracy is the value of the

elongation e. One means of finding this is

by an optical lever. The upper end of the

wire is securely clamped to a rigid support

(Fig. 59), and to the lower end of the wire

is fastened a rectangular piece of metal ^S*

terminating in a hook for the attachment

of a weight pan H. This rectangular

piece of metal is kept from twisting or

swinging by being let through a loosely

fitting rectangular hole in a second bracket

fastened to the wall. One leg of the

optical lever is supported in the axis of the

wire by the rectangular hook^ while the other

two legs are supported by the bracket.

In Fig. 60 mnb is the optical lever with its mirror ch vertical,

T i& a, horizontal telescope, and oo' is a vertical scale divided

into centimeters and millimeters. If the wire be stretched by

a small amount, the optical lever will assume the position m'nh'

making an angle 6 with its previous position. When light is

reflected from a mirror, the angle of reflection equals the angle

of incidence. Whence o'a'i=oa'i=0. Consequently oa'o' = 2 ^.

Pig. 59.
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And since the small distance aa' is negligible in comparison

with ao,

tan 2 = ^.
ao

If 6 is small, approximation (10), p. 7, may be employed,

giving

2 6=°-^.

Fig. 60.

The elongation is the vertical distance through which the point

m moves in passing to the position m' . So that

e = m'n sin 6 = mn sin

or, employing approximation (8),

0,

e =f mn • 6 = mn
00'

2 CIO

On putting this value of e in (116) it becomes

8FLE = ao

jT oP mn go'
(117)

Manipulation and Computation. — See that the wire is

straight and carefully suspended. Place three or four kilo-

grams on the supporting bracket directly over the clamp hold-

ing the upper end of the wire, and one kilogram on the pan

below. Put the optical lever in place and the telescope and

scale a meter or so from it, clamp the scale vertical, and adjust

the height of the telescope until it is at about the same level as

the optical lever. Move the head to such a position that the

image of the telescope is seen in the middle of the mirror of the

optical lever. If the eyes are not now at the level of the tele-
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scope, turn the thumb screw beneath the front legs of the optical

lever until the image is seen when the eyes are at the same

level as the telescope. This makes the mirror vertical. Focal-

ize the telescope as directed on p. 23.

Read the telescope, move the masses from the supporting

bracket down to the weight pan, read the telescope, move the

masses back to the supporting bracket, and read the telescope

again. If the elastic limit has not been exceeded, the last

reading should be about the same as the first. Repeat two or

three times. Make about five determinations, each one after

moving the telescope and scale a few centimeters farther from

the optical lever.

Measure the diameter of the wire in some half dozen places

with a micrometer caliper. Determine the length mn of the

optical lever by pressing the three feet upon a piece of card-

board, connecting the prick points made by the two front feet

by a fine line, and then measuring the normal distance between

the remaining prick point and this line by means of a milli-

meter scale. Determine the length of the wire with a meter

stick, and the loads added to the weight pan with a platform

balance weighing to grams.

For each distance ao find the average deflection oo' and cal-

culate ^- Find the average of all the values for — , and by
oo' oo'

(117) calculate U. Give the result in dynes per sq. cm., in

Kg. wt. per sq. mm., and in lb. wt. per sq. in.

Exp. 27. Study of the Flexure of Rectangular Rods*

Object and Theory op Experiment. — Even before a

given phenomenon is sufficiently understood to permit the deri-

vation by purely analytic methods of a formula that will show

the relation between the various factors entering into the phe-

nomenon, it is often possible to construct from purely experi-

* This experiment is taken with slight modification from Reed and Guthe's

" Manual of Physical Measurement."
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mental data an equation that will give the law connecting the

various related quantities. An equation obtained from experi-

mental data is called an empirical equation. One of the

methods used in the construction of empirical equations is illus-

trated in the present exercise.

If a number of rods of any material,' differing iii length,

breadth, and thickness be supported on a pair of knife-edges

and loaded in the middle, it would be expected that the flexure

produced, that is, the displacement I of the middle point of any

rod, would be a function of the load F, the distance L between

the supports, the breadth of the rod £, and its depth D. The
law of flexure of rectangular rods of a given material might,

perhaps, be expressed by an equation of the form

I = kF^L^BW, (118)

where Jc, «, /S, 7, and e are constants to be determined by

experiment. The object of this experiment is to ascertain

whether the facts warrant the acceptance of the above tenta-

tively assumed equation; and, if they do, to determine the

values of the five constants. The constants a, /3, 7, e, can be

most easily obtained by varying the independent variables one

at a time and noting the change of the dependent variable I.

When, in this way, these four constants have been determined,

the value of k is obtained by solution. -

First, let the load F be varied while the other independent

variables remain constant. This will give a separate equation

for each value of F used. Thus

lp^ = hF^'L^B''D\

Z^3 = hF^lFB'B',

lp^ = hF^^L^B^B'.

Dividing the first of the above equations by the third and the

second by the fourth,

\n = EiL and ^ = :^.
7 35"* 7 7^ ">

tj?3 JJg Ip^ J!
^
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Putting these equations into the logarithmic form,

log Ifi - log Ip^ = «i3(log F^ - log F^) (119)

and \oglp^-\ogljr^ = a^llogF^-\ogF^, (120)

in which Wjg denotes the value of a derived from the equation

expressing the ratio of Ip^ to Ip^ If the values of Wjg and a^^

obtained by solving (119) and (120) are nearly the same, their

average is to be taken as the value for a in (118).

Second, the other independent variables remaining constant,

let the length L be varied, the flexure I being observed when
the force F is applied. By the process described above we get

log ?ii
- log Zi3 = ;ei3(log ij - log ig) (121)

and logZi2-logZi4 = /324(logi2-logi/4). (122)

If the values of /Sjg and ^^ obtained by solving (121) and (122)

are nearly the same, their average is to be taken as the value

for yS in (118).

Third, let the breadth B be varied and the other independent

variables remain constant. This will give

log h^ - log Z,,3 = 7i3(log B, - log ^3) (123)

and
.
log ?^2 - log l^ = y^i^og B^ - log B^. (124)

From these equations a value for 7 will be found. .

Fourth, let the depth I> be varied. This will give

log Ijy^ - log ?J3 = £i3(log i>i - log 2)3) (125)

and logZj2-log?j4 = e24(log2>2-logZ>4). (126)

From these equations a value for e will be found.

If the values found for « are nearly the same, for ^ nearly

the same, for 7 nearly the same, and for e nearly the same, this

justifies the form assumed for the desired relation. If the

values experimentally obtained for any one of the quantities a,

)8, 7, e are not nearly the same, this means that the form as-

sumed is not the form of the relation which actually exists, and

some other form must be tried.

The equation obtained by substituting for a, /S, 7, e their

values thus experimentally determined is called an empirical
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formula. The statement of the facts expressed by this for-

mula constitutes the law of bending. The values obtained for

these four constants should be very nearly « = 1, ;S= 3, 7 = — 1,

6 = — 3. If exactly these values are obtained, the law of bend-

ing will be expressed analytically by the equation

Whatever the form of the empirical equation that is actually

found, the value of Te is determined by substituting in this

equation a set of corresponding values for Z, F, L, B, and D.

Several such sets of valuers should be substituted and the

average value for k used. If similar series of measurements

are made upon rods of different materials, the values of a, /3,

7, 6 are found to be very nearly the same for the different

materials, but the values of k are different. This means that

k depends upon the material of the bar and not upon its dimen-

sions, whereas the other constants depend only upon the

dimensions of the bar.

Manipulation and Computation. — The rods to be ex-

perimented upon should be 70 or 80 cm. long and their trans-

verse dimensions so selected that the same bars can be formed

into two series, one in which the bars have constant depth and

variable width, and another in which they have constant width

and variable depth. The variable length is secured by adjust-

ing the distance between the supporting knife edges. After

a bar is placed on the knife-edges a weight pan is suspended

from the bar about halfway between the knife edges and

sufficient weight applied to insure good contact between the

bar and its supports. On the addition of a known load the

flexure of the bar, that is, the depression of the middle point,

is measured. This measurement may conveniently be made by

means of a microscope furnished with a micrometer eyepiece,

or by means of a micrometer screw fastened to an adjacent sup-

port directly above the middle of the bar. In the latter case

the instant when the micrometer screw comes into contact with
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the bar can be determined either by means of a telephone

receiver in a battery circuit including the bar and micrometer

screw, or by observing the image of some fixed object in a small

mirror, one end of which rests upon the rod and the other

end upon some adjacent fixed support. In order to be certain

not to load the rods beyond their elastic limits, the student

should ask an instructor what loads may safely be applied.

Following the division of the experiment as outlined above,

make a series of observations on a single rod by noting the

flexures produced by different loads on the pan. Add, say,

500 g. and observe the flexure, add 500 g. more and observe

the flexure, and so on until six equal increments of load

have been added. Then reverse the process, removing 500 g.

at a time and taking an observation for the flexure after

each change of load. Combine the six values of load and cor-

responding flexure as in (119) and (120) so as to get three

values for a, viz., a^^, a<^^ and agg.

Second,by moving the knife edges a few centimeters, obtain six

lengths of a single rod, and for each length determine the flexure

produced by the same load of, say, 2 Kg. Combine the values of

L and I as in (121) and (122) so as to obtain three values for /3.

Third, with the distance between the knife edges constant,

find the flexure produced by a constant load of, say, 2 Kg. act-

ing on each of four or six bars of the same material and depth

but different breadth. Measure the breadth of the bars with

a micrometer caliper. Proceed as directed in the preceding

paragraph, using equations like (123) and (124) to find 7.

Fourth, with the distance between the knife edges constant,

find the flexure produced in each of four or six bars of the

same material and breadth but different depth. Measure the

depth of the bars with a micrometer caliper. Proceed as di-

rected in the preceding paragraphs, using equations like

(125) and (126) to find e.

Insert the final values of «, /8, 7, e in (118), and formulate in

words a statement of the facts expressed by the resulting em-

pirical equation.
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Fig. 61.

Exp. 28. Determination of the Tensile Coefficient of Elas-

ticity, or Young's Modulus

(SECOND METHOD, BY BENDING)

Object and Thboky of Experiment.— Consider a rec-

tangular rod of length L, breadth B, and depth D, fixed at one

end and weighted at the

other. The rod will become

bent as in the figure. The
upper portion of the rod is

extended and the lower por-

tion compressed. Since the

rod is strained by a longi-

tudinal stress, and since

Young's modulus is defined

as the ratio of the longitudi-

nal stress to the longitudinal

strain, Young's modulus may be determined from an observa-

tion of the amount of bending which a given force produces in

the rod. The object of this experiment is, by the method of

bending, to determine the Young's modulus of the material

composing a rectangular rod.

Imagine the unstrained rod to be cut up into m laminae, each

of width w, by a series of planes normal to its length. Then

let the rod be bent slightly by the force F applied downward

at the end of the rod, and let the yth lamina from the free end

be thereby so distorted that its sides ac and Id make with each

other a small angle 6^. The restoring stress in this lamina

produces a couple which tends to bring the rod back to its

undistorted position, and is prevented from doing so only by

the distorting force F.

The first step in the development of the formula for deter-

mining the Young's modulus of the rod is to find an expression

for the restoring couple due to the stress in this yth lamina.

Halfway between the upper and the lower surfaces of the rod
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is a neutral surface gJi which is neither extended nor com-

pressed. Through the point e, where ao cuts gh, draw a'c'

parallel to hd. Then the original length of any line vz in the

yth lamina is that part of it included between a'c' and hd, and

the increase in its length is the part of it between ac and a'c'

.

Imagine the upper half of the yth lamina to be made up of

n layers, each of breadth B equal to that of the rod and of

depth t. Then, counting upward from ef, the top of the «th

layer is stretched it6j and the bottom of it is stretched

(J,
— V)tdj. The effective elongation, e^, of this ith layer lies,

therefore, between these limits. That is

(i-l)te^<e,<itej. (128)

If E denotes the Young's modulus of the material composing

the rod, and Fi the force of restitution developed in this ith

layer, then from the definition of Young's modulus (p. 119),

Bt w BtCi

Whence F,. = ^^*''-

w
So that, from (128),

w ^ ' ' w '

Since the distance of the material in the ith layer from the

neutral surface is less than it and greater than (i—V)t, it

follows, if In denotes the restoring torque due to the strain of

this layer, that

^^ {i - 1)w, < Li < ^^v^m.

.

The restoring torque L developed by the straining of all the

layers above neutral surface i-s the sum of the torques devel-

oped in the separate layers. That is.

\<-L< Z
w '
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or, on summing the series indicated in the above expressions,

EB^e. 2m3-3w2 + m^t ^EBl?e. 2n^ + Sn^ + n

w 6 w 6

Whence, since nt= ^D,

EBe. lJ^-^B^t + 2Bt^^^ ^EBe. B^+SBH+2Bt^ .-,„qa

w 24
<^< w 24

^^^^->

The difference between the third and first members of (129) is

i t. Since -r is the radius of curvature of the neutral
iw Oj

surface in the/th lamina, and since this radius is never very

small, it follows that, by choosing t sufficiently small, the dif-

ference between the third and first members of (129) can be

made less than any assigned quantity. It follows that the

value of L is th« common limit approached by the first and

third members of (129) when t approaches zero. That is,

,^EBejB^
2iw '

Now the resultant moment of the restoring forces below the

neutral surface equals the moment of those above. It follows

that the whole torque due to the strain in the/th lamina is 2L.

Since the bar is in equilibrium, this restoring couple equals the

distorting moment of E about e. If the rod is bent only

slightly, the moment of E about e is so little smaller than Ejw

that we may write

EBe.BK J.. .-tons——2—= Ejw. (130)
12 w

The next step is to find the depression of the end of the rod.

The entire depression I may be regarded as made up of parts,

?j, ?2i • • • 5 4> due to the bending in the different laminae.

At e and / draw es and fk tangent to the neutral surface and

equal in length respectively to the arcs eh and fh. Then the

angle between these lines equals the angle 6j between ac and hd,

and this angle is so small that sk is practically the arc of a

circle two of whose radii extend in the directions es and fk.
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It follows, since /A;, if prolonged, would cut e« between e and/,

that

fk-ej<sk<es-0j: (131)

Moreover, if the depression of the end of the rod is not more

than one hundredth as great as the length of the rod, it can be

shown that sh differs from Ij, the depression due to the bending

in the yth lamina, by not more than some 0.02% or 0.03% of

itself. Accuracy so great as this is seldom required in a de-

termination of Young's modulus, and the bending is usually

less than that indicated. It is, therefore, permissible to use sk

as equal to Z, . Since in addition, fk =fh = (/ — l)w, and

es = eh =jw, (131) may be rewritten

(y-l)w6'^.<Z,.<yw6',..

On substituting in these inequalities the value of 9^ from (130)

they become
12Fj(j -Vyiifi , 12 Fj'^'u^

EBD^ ^ EBW '

The depression I of the end of the rod due to the straining of

all the laminae is the sum of the depressions due to the separate

laminae. That is,

or, on summing the series indicated,

2m^ 12Fw^ 2m^+Bm^ + m
EBJD^ 6 EBB^ 6

Whence, since mw = L, the length of the rod,

^^
-(2 L^-2 Lu?) < I < ^s(2i3 + SLhv + Li^). (132)

FBI)^^
' EBB^^

The difference between the third and the first members of

a quantity which, by choosing w small enough, can be made

less than any assigned quantity. When the rod is not bent
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too much, it follows that the value of I is the common limit

approached by the first and third members of (132) when w
approaches zero. That is,

t -k^.- (133)

If the rod, instead of being fastened at one end and loaded

at the other, is supported on two knife edges and loaded in the

middle, the bending is practically the same as if it were fastened

at its middle point and had acting upward upon it at each end

a force half as great as the load actually applied. Let the dis-

tance between the knife edges be L' = 2L, and the force ap-

plied be F' = 2F. Then on substituting for L and F in (133),

we get

^
. F'L'^

iFBD-
or, dropping the primes,

The preceding development of the above formula may be

summarized as follows :

The first step, after supposing the rod cut into laminse by a

series of nearly vertical planes, is to find the restoring torque

in one of these laminae. The upper half of the lamina is

imagined to be cut into a series of nearly horizontal layers.

From the general formula for Young's modulus, the restoring

torque due to the strain in this layer is found. These torques

are then summed, and, since an equal torque in the same direc-

tion is exerted by the lower half of the lamina, the result is

doubled, the total restoring torque in the lamina being thus

obtained.

The second step is to equate this restoring torque to the

distorting torque due to the force at the end of the rod, thus

getting an equation by which the angle between the two

sides of the strained lamina can be found.

The third step is to find the depression of the end of the rod.

This is done by first getting an equation connecting the angle
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with the depression due to the strain in one lamina, eliminat-

ing the angle from this equation and the last equation ob-

tained in the second step, and then summing the depressions due

to the strains in all the laminse. This gives the formula for

a rod fixed at one end and loaded at the other.

The fourth step is to modify this formula to fit the case of

a rod supported at both ends and loaded in the middle. This

is done by imagining the rod to be made up of two rods placed

end to end, their inner ends being fixed and the outer ends

pushed upward.

Manipulation and Computation. — Measure B and D
at a number of points along the rod by means of a micrometer

caliper. Measure L, the distance between the two knife edges,

with a meter stick. Place the rod on the knife edges and sus-

pend from the middle point a pan containing sufficient load to

bring the rod into good contact with the knife edges. The
flexure I of the rod produced by an additional load F may be

measured by means of a microscope fitted with an eyepiece

micrometer, or by means of a micrometer screw placed above

the center of the rod and moving in a nut fastened to a rigid

support.

A microscope is focalized by first bringing it too near to the

object and then, with the eye at the eyepiece, moving the whole

microscope slowly away from the object until the latter is in

focus. In the present case it is easier to move the rod than

the microscope. Altering the length of the microscope tube

alters the magnifying power of the instrument, and if this

length is altered at any time during the experiment the eye-

piece must be recalibrated (see p. 20).

If the mirometer screw is used, the instant when the screw

comes into contact with the rod can be determined either by

means of a telephone in a battery circuit including the rod and

micrometer screw, or by observing the image of some fixed

object in a small mirror one end of which rests upon the rod

while the other end rests upon an adjacent fixed support.

Read the position of a distinct mark or pointer near the
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middle of the rod, add, say 3 Kg. and read again, remove the

3 Kg. and read again. Repeat several times, both to be sure

that the elastic limit has not been exceeded and to get a num-
ber of determinations of the flexure. Then alter by a few centi-

meters the distance between the knife edges, and repeat. Take

about five different lengths, and for each length, using the

average flexure for that length, calculate the ratio Find

the average of the five values of — , and by (134) calculate

the Young's modulus of the rod. Express the result in dynes

per sq. cm.. Kg. wt. per sq. mm., and lb. wt. per sq. in.

Exp. 29. Determination of Simple Rigidity

(VIBRATION METHOD)

Object and Thboey of Experiment.— The object of

this experiment is to determine the simple rigidity

of a thin wire.

Consider a cylindrical rod or wire of length I and

radius r with one end fixed and the other end

twisted through an angle ^. This will cause an ele-

ment of the surface as AB to be displaced to AN

.

From the diagram the shearing strain in the outside

layer of the cylinder is
BB'

I

And since BB' = ^r,

it will be seen that at every point of the wire dis-

tant rj from the axis and I from the fixed end, there

is a shearing strain equal to If S denotes the

Fig. 62.
shearing stress developed at a point distant »"j from

the axis and I from the fixed end, and /i the simple

rigidity of the wire, it follows from the definition of simple

rigidity that
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Whence S=^. (135)

This is the value of the stress at any distance r^ from the axis

of the wire.

The next step is to find what torque would be needed to

keep the wire twisted as it is in the figure. Imagine any cross

section divided into n concentric rings, each of width Ar. The
length of the outer boundary of the ith of these rings, beginning

at the center, is 2 TriAr, and the length of its inner boundary is

2 irQi — l)Ar. If, then, the area of the ith ring is denoted

by Ai,

2 7r(i - l)Ar Ar<Ai<2 iriAr An (136)

If the average stress on this ring is denoted by Si, then (135)

shows that

^^(ii-l~)Ar^g^^,x^i^_
(137)

V t

On multiplying (136). by (137) and denoting by Fi the force

which acts on the ring,

2 7riJL(j>ii - lyCAry ^ p, ^ 2 7riJi,(j>i\Ary

I
'

/

It follows that if the torque which acts on the ring is denoted

by Li,

2 7riJ,<l>Ci-iy(Ary _^^ 2777i^i^(A?;}^

I

''^
I

On summing the torques which act on all the rings and letting

L denote the resultant torque, we obtain

^^/^^(AO^ X (,-_l)3<L<2^^^^^(Ary X i3,

or, on summing the series indicated by the summation signs,

(see p. 15),

7r/..^(Ar)^ [# -2n^ + n^<L< ^/^^AQ^
^^, + 2n^+n%

21 iil

which may be rewritten
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^ [(«Ar)* - 2(wAr)3Ar + (»iA»-)2(A»-)2] < L <^ [(nAr)*

+ 2(wA>-)3Ar + (»iAr)2(Ar)2].

Since re is the number of rings of width Ar between the center

and the circumference of the wire nAr = r, and the above ex-

pression may be rewritten

^ [r* - 2 r^Ar + r\Ary] < L <^ [r* + 2 r^Ar + rXAry] .

The difference between the two outer expressions in the above

inequality is ^^•4?'^Ar, a quantity which, by choosing Ar

sufficiently small, may be made less than any assigned quantity.

It follows that the value of L is the common limit which both

of the above expressions approach when Ar approaches zero.

That is, if d denotes the diameter of the wire,

2Z 32 ?
^^'^^>

This is the torque that must be applied at the end of the wire

to keep it twisted.

If a massive bodj'^ B is suspended from the lower end of the

wire and twisted about the axis of the wire through an angle

(/), the wire and B react upon each other—5 exerting upon the

wire this torque L that keeps the wire twisted, and the wire exert-

ing upon B an equal and opposite torque L' that tends to swing

B back to a position such that the wire is not twisted. That is,

L'=-L=-^?^^*. (139)

The second negative sign in (139) means that the torque L' and

displacement ^ are in opposite directions. If- B is twisted

about the axis of the wire and then released, the torque L' will

swing it back towards its original position with an acceleration

which by (104) and (139) is

where ^denotes the moment of inertia of B.
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Since the quantities within the parenthesis in (140) are all

constants, it is seen that the angular acceleration'is proportional

to the angular displacement, and that the acceleration and the

displacement are in opposite directions. From this it follows

that the motion of B is simple harmonic. Its period of com-

plete vibration is, therefore,

T\=21^^}-^=2^^fi^. (141)

Whence, the simple rigidity of the material composing the

wire is

128^rZ^
(142)

Manipulation and Computation.— Suspend from the

lower end of the wire a massive body of such a shape that its

moment of inertia can easily be computed, a solid iron cylinder,

for instance, with its axis coincident with that of the wire.

Find the period of vibration of the suspended system by one of

the methods outlined in Chapter II.

Take the diameter of the wire with a micrometer caliper.

Since the diameter enters the equation to the fourth power, it

must be determined with considerable care. Measure it in not

less than ten places distributed about equally along the length

of the wire and take the mean. Measure the length of the wire

with a meter stick or steel tape, and take the necessary dimen-

sions of the suspended body. The mass of the suspended body

should be determined within 0.1%. Express the value for the

simple rigidity in dynes per sq. cm.. Kg. wt. per sq. mm., and

lb. wt. per sq. in.

Exp. 30. Determination of Simple Rigidity

(STATIC METHOD)

Object and Theory op Experiment. — The method

given in the preceding experiment is applicable only to wires

of radius so small that if a heavy body is suspended by the
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wire, the period of torsioBal vibration will be large enough to

admit of accurate determination. The present method is ap-

plicable to heavier rods.

In the method here employed there is fastened to the lower

end of the rod a massive disk which has its upper face grad-

uated in degrees, and has around its

edge a series of pins placed 20° apart.

In front of the disk and in back of it

are two horizontal scales. The twisting

couple is applied to the disk by hori-

zoiital forces acting tangentially at its

circumference. Masses m^ and m^ are

suspended by cords which pass in front

of the two horizontal Scales. Tied to

each supporting cord at about the level

of the pins in the disk is another short

cord which has at its other end a loop

that can be slipped over one of the

pins, thus twisting the graduated disk

through an angle which can be read by
means of a pair of pointers fixed above it.

Let the forces in the horizontal cords

be denoted by -fj and F^. Then from

the diagram (Fig. 6-i)

h
tan w (143)

Fig. 63.

system of concurrent forces in equilibrium.

and since F^ and m-^g are perpendicular

to each other, and #j, m^cf, and the

tension in the supporting cord are a

^1
= tan w. (144)

From (143) and (144) it follows that

jr, _ m.,gx
^'-

h
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This is the force with which the horizontal cord pulls on the

point where the three cords join. The pull F^ which the cord

exerts on the disk is equal to this, but in the

opposite direction. That is,

-F,
1 --^i---T- (145)

The second negative sign in (145) denotes

that F-^ and x have opposite directions. If

the two masses m^ and m^ are equal and their

supporting threads looped over diametrically

opposite pins, and if the points from which

the upright cords hang are equidistant from

the plane of the wire and supporting bracket,

J'j = F^. If we drop the subscripts and de-

note by D the diameter of the disk increased

by twice the radius of the horizontal cords,

the moment of the couple that tends to

turn the disk farther from its equilibrium position is

F'D =
mgxD

(146)

On pp. 134-136 it has been shown that if a cylinder of length

I, diameter d, and made of a material of simple rigidity /tt is

twisted through an angle of (j> radians, the torque which this

twisted wire exerts on the body that holds it twisted is

L'=- riJ,<f)d*

'32T'
(147)

The right member of (146) is the torque that tends to swing

the disk farther from its position of equilibrium, and the right

member of (147) is the torque which tends to restore it to that

position. When the disk is at rest, one of these is equal and

opposite to the other. That is.

mgzD _ TTfu^d'^
(148)
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The negative sign in this equation occurs because x and ^ are

measured in opposite directions. Using simply the numerical
R

values, and writing in place of <^ radians its value ^^- 2 tt

radians, where /3 is the number of degrees in radians, (148)

gives

Manipulation and Computation. -^ Carefully measure

the diameter of the rod or wire in at least ten places with a

micrometer caliper. Take the diameter of the disk with a

.

vernier caliper. Measure h and I with a meter stick or steel

tape. Use such loads and loop the cords over such pins as to

get a series of some half dozen values for ^, each somewhat

larger than the one before it, but the largest not much more

than 90°. The loads in the two pans must be equal, and the

cords should be looped over pins far enough around to give

fairly large values for x. In getting each end of the distance

X, record the reading on each side of the cord and use the

mean as being the position of the middle of the cord. Find

the average value of -—, and by (149) find fi. Express the

result in dynes per sq. cm., Kg. wt. per sq. mm., and lb. wt.

per sq. in.

Exp. 31. Determination of the Modulus of Elastic Resilience

of a Rod

Object and Theory op Expekiment. — Resilience of a

body is the energy it possesses due to a strain developed in it.

The ultimate resilience or modulus of resilience is the strain

energy of the body when strained up to the elastic limit. Cor-

responding to the different types of strain are different types

of resilience : tensile resilience, flexural resilience, torsional

resilience, etc. The resilience of a material is usually given

either in terms of work per unit mass or work per unit volume.
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The object of this experiment is to determine the flexural

resilience of a rod.

The rod rests on two knife edges and is distorted by a force

applied at the middle point. Let the length of rod between

the knife edges be L cm., the area of cross section be A sq.

cm., the density be p grams per cu. cm., the mass of that part

of the rod between the knife edges be m grams, the load neces-

sary to strain the rod to its elastic limit be F dynes, and the

displacement of the middle point of the rod by the force F be

I cm. Since, until the elastic limit is reached, the distortion

is proportional to the force applied, the average force acting

while the distortion is increasing from zero to I is \F. There-

fore the strain energy stored up in the specimen, that is, the

modulus of flexural resilience of the rod, is

R = lFl&igs.

The modulus of flexural resilience per unit of volume is

T. R Fl

and the modulus of flexural resilience per unit of mass is

T, R Fl
±1^ = — =-— ergs per gram,

or, if force is measured in grams' weight, F', instead of dynes,

F'l
-^m = ^— gram-centimeters per gram.

Manipulation and Computation. — The apparatus con-

sists of the rod to be examined with its ends resting upon knife

edges, and a microscope fitted with an eyepiece micrometer to

measure the deflection of the rod. All of the apparatus must

be placed upon a support free from, vibration. Weigh the bar,

measure its length and cross section, and calculate the mass of

that part of it between the knife edges. Focalize the micro-

scope upon a fine cross engraved upon the center of one of the

vertical faces of the bar, or upon the point of a needle fastened

rigidly to the middle of the bar. Carefully add weights to the
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pan suspended from the middle of the bar, taking a reading of

the deflection after each addition. During the progress of the

experiment carefully plot weights and deflections on cross-sec-

tion paper— the weights as abscissas and deflections as ordi-

nates. As would be expected from Hooke's law, the line

connecting these points is straight from the point of zero load

up to the point representing the elastic limit, and from there

it bends toward the axis of ordinates. Thus, from the curve

can be obtained both the value of the load necessary to strain

the bar to its elastic limit, and the deflection produced by this

load. All the data are now at hand for determining the value

of the modulus of flexural resilience per unit volume, or per

unit mass.



CHAPTER IX

VISCOSITY

In an elastic solid a shearing stress produces a shearing

strain, and this strain, in turn, produces a restoring stress. If

the body is subject to a given stress that is not beyond its

elastic limit, the strain does not change with the lapse of time,

and the ratio of the stress to the strain is a coefficient of

elasticity.

In a liquid a shearing stress produces a shearing strain, and

with the strain there is developed a stress that opposes the dis-

tortion but does not tend to restore the liquid to any former

shape. In fact, any shearing stress, however slight, produces a

continuously increasing strain, and the ratio of the shearing

stress to the shearing strain thereby developed in one second is

called the coefficient of viscosity of the liquid.

Consider two parallel layers of the liquid d cm. apart, the

lower layer at rest, and the upper moving s cm. per sec. If A
is the area of the upper layer and F the force which is urging

it forward, then the shearing stress applied is -j-, and the strain

produced per second is —. Consequently the coefficient of vis-

cosity of the liquid is

F s Fa /--< r/>^

'^ = A^-d = As
^^^'^

Exp. 32. Determination of the Absolute Coefficient of

Viscosity of a Liquid

(POISEUILLE'S METHOD)

Object and Theory of Experiment. — Consider a column

of liquid flowing through a tube of length I, and with a radius,

143
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r, so small that there will be no eddies in the liquid column.

Imagine this column to be made up of a large number n of

concentric hollow cylinders of very small thickness Ar. Sup-

pose that all of these hollow cylinders but one could be made

solid, so that there would be a solid rod sun-ounded by a thin

layer of the fluid, and this again surrounded by a solid tube.

While the rod was moving, two forces would be acting on it

— one due to the viscous resistance in the tube that was still

liquid, tending to retard the motion of the rod, and the other

due to the difference between the pressures at the two ends

of the rod, tending to accelerate it. If the radius of the rod

were a;Ar, the viscous resistance in the liquid tube surround-

ing it would, by (150), be

^'^^r '

and if^ denotes the difference between the pressures at the two

ends of the rod, the force to which this difference in pressure

would give rise would be

Fj, = p -TrCxAry.

If the rod were moving uniformly, F^ would equal Fp, i.e.

77 • 2 TTxArl s /- A NO1 = p . Trfx^rY.
Ar

Whence ^^ p(xAr)Ar
^^5^^

This equation shows that the difference in speed between the

outside of an axial cylinder of the liquid of any radius and the

outside of the adjacent layer is small near the axis where xAr

is small, and increases in direct proportion with the radius of

the cylinder.

If it is imagined that these concentric layers of liquid are

congealed without interfering with their ability to slip past one

anotlier, then on account of their difference in speed, at any
instant after the flow has begun, the end of the inmost cylinder

will protrude beyond the end of the adjacent layer, this second
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layer will protrude beyond the end of the third layer, and so on.

Let Sj represent the speed of the inmost cylinder relative to

the second layer ; Sj, the speed of the second layer relative to

the third, etc. Also let v^ represent the volume of the portion

of the inmost cylinder that protrudes beyond the end of the

second layer ; v^, the volume of the second solid cylinder that

protrudes beyond the third layer, etc. Then the entire volume

discharged by the capillary in time t is

V=vi + v^ + v^+ ... +V (152)
Now

Vj = 7r(A/*)2sj^, v^ = 7r(2 Ar^s^t, v^ = 7r(3 Arys^t, etc.

Putting these values in (152), we have

r=7r«[Si(Aj-)^ + 82(2 Ar)2 + 83(3 Ar)2+ ... + s„(wAj-)^],

and on substituting for Sj, s^, Sg, etc., their values from (151),

we obtain

P^^
7rp^(AO-t .-^3 ^3 33 3.

2r}l
"- -

_ TrptjAry

2r,l

'

n\n + l)n
4 J

= ^[(nAO* + 2(nA?-)3(Ar) + (wAr)2(Ar)2]

.

But nAr = r. Therefore in the limit, when Ar = 0,

r=2^. (153)

If the pressure is due to a column of liquid of height h and

density p, then p = pgh. On putting this value in (153), and

solving for ^, we have
j^^ ^

"= sT-F ^^^^^

It should be noticed that in deriving (154) it has been tacitly

assumed (a) that the viscous resistance to the flow of the liquid

is uniform throughout the entire length of the tube, (J) that

the lines of flow of liquid in the tube are parallel to the axis

of the tube throughout its length, (c) that no part of the energy

supplied to the liquid in the tube appears as energy of motion,

(c?) that there is no effect at the outlet due to surface tension.
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The conditions demanded by (a), (6), and (c) can be realized

to a sufficient degree of approximation by using a tube that is

both long and of narrow bore and having the liquid flow through

at a uniform rate. Condition (^d) is met by immersing the dis-

charge orifice in a portion of the liquid having a

considerable free surface.

1

Manipulation and Computation. — A vis-

cometer that fulfills the above conditions is illus-

trated in Fig. 65. The vertical tubes AB and CD
are of uniform bore and are graduated in millimeters

throughout their length. The capillary tube BE
is straight and of uniform circular bore. In order

that the temperature of the liquid being investigated

shall be constant and definite, the viscometer is

supported in a suitable water jacket supplied with

a thermometer.

The length I of the capillary tube is measured

with a meter stick. The mean radius of the bore is

determined by measuring the length of a known mass

of mercury at different positions along the length of

the tube. An amount of mercury sufficient to make a

thread about four centimeters long is drawn into

the tube by suction applied at the opposite end, and

this thread is measured in length at different

equally spaced positions along the length of the

tube by means of a dividing engine. Knowing

the mass of the mercury thread and the average length,

the average radius of the bore of the tube is determined.

A tube with a bore departing very much from uniformity

must be rejected in determining the absolute coefficient of

viscosity.

In order to determine the V in (154) it is necessary to cali-

brate the lower part of the tube CD. This may be done by

putting a solid stopper at E, removing the one just above 0,

and dropping into GB known volumes of water from a burette.

Pig. 65.
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After each small volume of water is dropped in, a reading is

made of the top of each water column— the one in QB and the

one in the burette. From these readings a curve is to be

plotted coordinating the volume of water in CD with the read-

ing of its surface on the CD scale.

After thoroughly cleaning and drying the parts of the vis-

cometer, it is assembled, a quantity of the liquid under investiga-

tion is introduced, and this liquid column run back and forth

until it is free of air bubbles and the tubes are coated with

a thin film of the liquid. The quantity of liquid introduced

should be such that it will form a column extending from a

point near the upper end of the tube AB to a point near the

lower end of QB.

With all the rubber stoppers tight, and the stopcock S open,

run the liquid into the position mentioned above, close the stop-

cock, and place the viscometer in the water bath. After the

temperature has become constant and of the desired value, with

stop watch in hand open the cock «S', and when the meniscus in

AB reaches some previously selected scale division X, start the

watch ; when the meniscus reaches some second selected scale

division X.\ stop the watch. This gives the value for t in (154).

When the upper meniscus was at X. the lower meniscus was

at some point y, and when the upper meniscus had fallen

to x' the lower meniscus had risen to some point y' . The posi-

tions of y and «/' can be obtained by opening S and again run-

ning the liquid into AB to the points x and a/. The mean of

the vertical distances between x and «/, and d and «/', is the value

for h in (154). These distances can be obtained by the scales

engraved on AB and QB. p can be obtained by means of a

balance and a 5cc. pipette. Fis obtained by finding from the

curve already plotted the volume of water that would be held

between the marks y and y'

.

At least five sets of observations should be taken and the

average value for -= used in (154) to get ?; at the temperature

of the experiment.
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Exp. 33. Determination of the Specific Viscosities of Liquids

(COULOMB'S METHOD)

Object and Theory of Experiment.— On account of

such experimental difficulties as that of obtaining a capillary

tube of uniform bore and circular cross section, of accurately

measuring its diameter, and of keeping the capillary free from

minute air bubbles and particles of foreign substances, the

determination of a coefficient of viscosity by the method given

in the pi'eceding experiment is very troublesome. Coulomb's

Method is especially suited to the determination of the relative

viscosities of those liquids used in engineering and the arts

which are liable to contain particles of solid substances in

suspension, e.g. lubricating oils. By specific or relative vis-

cosity is meant the ratio of the viscosity of the liquid to the

viscosity of water. The object of this experiment is to deter-

mine the specific viscosities of a series of liquids.

If a massive disk suspended axially by a thin vertical wire

be immersed in a liquid and set into torsional vibration, it will

be shown in the chapter on Damped Angular Vibration, Vol.

II, that the ratio of the lengths of any two successive swings

from one end of the path to the other is a known function of

the " damping constant," a, which is proportional to the viscos-

ity of the liquid surrounding the moving body.

Let o-j represent the ratio of the lengths of any two successive

oscillations of the disk when immersed in the first liquid ; ?\',

the period of vibration of the disk when immersed in the first

liquid ; and aj, the damping constant for the first liquid. Let

o-g, T^., and a^ represent the corresponding quantities for the

second liquid. Then, from (31), Vol. II,

(7, = e *ii
.

(155)

where e is the base of the natural logarithms and K is the
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moment of inertia of tlie suspended system,

by (156) and putting the resulting equation

into tlie logarithmic form, we obtain

log a-^ ^ a^Tj'

log 0-2 a^T^''

Whence the relative viscosity of the two
liquids, z, is

(157)

Dividing (155)

„_ai_ T^ log 0-1

Fig. 66.

"2 ^l' log 0"2

If the second liquid is water, z is the specific

viscosity of the first liquid.

Manipulation and Computation. — In

the apparatus here employed (Fig. 66), one

end of a thin piano wire is fastened to a

rigid support while the other end is attached

to a vertical rod carrying a divided circle

and the massive disk which is to be immersed

in the various liquids. The disk has a thin

stem by which it is fastened to the rod carry-

ing the divided circle. The vessel containing

the liquid being studied is surrounded by an oil bath heated

by means of a Bunsen burner.

As the viscosity of many liquids is very different at different

temperatures, it is always necessary to make the determination

at the temperature at which the liquid is to be used. For in-

stance, a test of cylinder oil should be made at about 150° to

175° C, while most machine oils should be tested at about 50° C.

Since the relative viscosities of many pairs of specimens of

oil are even reversed with a change of temperature of less than

100° C, it is impossible to judge the relative lubricating values

of oils from their relative viscosities determined at a tempera-

ture much different from the temperature at which they are to

be used.

After cleaning and assembling the apparatus and allowing

the temperature of the specimen to attain the required value,
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twist the disk through about 180° by rotating the rod above

the divided circle. With a stop watch observe the time of ten

complete vibrations. One tenth of this time in seconds is the

period T{. By means of the pointers P and P' make a series

of readings of the turning points of successive swings to the

right and to the left. The number of scale divisions through

which the disk turns in rotating from one end of its path to

the other is the magnitude of thait oscillation. Calling the

magnitudes of these successive oscillations f^, ^2' ^s' ^^c, we
have

Ii = l2 = l3= ... =0-,.

?2 U U '

Whence fg = ^^a^,

f1 = ^i'^i = h'^i^

and, in general, ?„ = ^^o-j'"-''.

If, say, twenty oscillations were observed, we have then

etc., see fc

and by finding the average of |^, 1^, l^,--- f^i and taking
fell 612 513 ?20

the tenth root of this average, o-j is found.

In the same manner find T^ and cr^. These values of ?\',

T^, o-j, and cr^ substituted in (157) will give the relative vis-

cosity of the two liquids. With liquids having viscosities not

very different, the value of 2\' will be so nearly equal to T^

that their ratio may approximate unity ; but it is never allow-

able to assume their ratio to be unity without experimental

verification.

Instead of reckoning viscosity in absolute units or with ref-

erence to water at some standard temperature, the viscosity of
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a liquid is sometimes rated in comparison with the viscosity

of an aqueous solution of sugar having a definite concentration

and temperature. For example, the viscosity of a certain oil

at 50° C. may be specified as being equal to the viscosity

of an 18% aqueous solution of pure sugar at 20° C. Values

for the viscosities of aqueous sugar solutions of various con-

centrations, referred to water, are given in Table 10.





PAET 11. HEAT





PART II. HEAT

CHAPTER X

TEMPERATURE

The comparison of temperatures involves several arbitrary-

conventions. Temperatures cannot be directly measured,

—

they can be compared only in terms of some other phenomenon

which depends upon temperature. Of the various phenomena

which are used for the comparison of temperatures, the follow-

ing are the most important : (a) change of the volume of a gas

or liquid kept at constant pressure, (S) change of the pressure

of a gas kept at constant volume, (c) change of the electric re-

sistance of a metal wire, (c?) production of an electromotive

force at the junction of two dissimilar metals, (e) quantity of

energy radiated by the hot body, (/) luminous intensity of the

radiation of a particular color radiated by the hot body. In

cases (a), (5), (c), and (c?) it is necessary to select a particular

thermometric substance. In all cases it is necessary to adopt

two particular temperatures as standard or fixed points of a

thermometric scale, and to divide the interval between these

points into a definite number of spaces or degrees.

The scale of temperatures that has been adopted as standard

is based on the change of pressure which a change of tempera-

ture produces in a fixed mass of hydrogen kept at constant vol-

ume. By means of a gas thermometer temperatures as high as

1700° C. can be compared. However, as the standard gas ther-

mometer is both bulky and fragile, it is seldom used except in

scientific work and for the purpose of standardizing other ther-

mometers. All other thermometers are calibrated in terms of

the gas thermometer.

155
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On account of the comparatively simple technique necessary

in its use, the mercury-in-glass thermometer is employed when-

ever the conditions of the measurement permit. By using a

very hard glass, and filling the space above the mercury with

an inert gas at a pressure sufficient to prevent boiling of the

mercury, a mercury-in-glass thermometer can be used up to

about 650° C. (1000° F.). Mercury-in-quartz thermometers

having the space above the mercury filled with gas at 60 atmos-

pheres pressure can be used up to 700° C.

Thermometers available for temperatures above 500° C. are

often called pyrometers. The electric resistance and the ther-

moelectric instruments are available for temperatures up to

about 1500° C. For temperatures above this, radiation pyrome-

ters are available.

Measurements of temperature, even by means of the mercury-

in-glass thermometer, are subject to so many sources of error

that an accurate determination of temperature is a task of some

diificulty. Nevertheless, the thermometric methods have be-

come so highly developed that if proper precautions are taken

and proper corrections made, a measurement of temperature

made with a mercury-in-glass thermometer between 0° C. and

100° C. can be trusted to 0°.005. The methods described in

the following pages correspond to an accuracy of about 0°.05.

The principal sources of error in the use of a mercury-in-

glass thermometer are :
—

1. Errors in reading the thermometer due to parallax. Usu-

ally the scale of a thermometer is at some distance in front of

the capillary, so that, unless the line of sight is normal to the

length of the tube, the reading is too high or too low. The

two principal methods employed for keeping the line of sight

normal to the length of the thermometer tube are, (a) to hold

a small mirror against the back of the thermometer, and to place

the eye in such a position that the top of the mercury thread is

in line with the image of the eye seen in the mirror; and (J) to

observe the thermometer at a distance by means of a telescope

containing a cross hair in the eyepiece, the telescope being fas-
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tened normal to a rod placed parallel to the thermometer tube.

The telescope must be arranged so that when it is moved along

the supporting rod to observe the end of the moving column at

different heights, it will always remain normal to the support-

ing rod. A cathometer is usually most convenient for this pur-

pose, but a short open tube without lenses, having crosshairs at

the two ends, and sliding either on the thermometer itself or on

a parallel rod, serves the purpose very well.

2. Errors due to the changes in the volume of the bulb lagging

behind the changes in temperature. A rising thermometer in-

dicates too low, and a falling thermometer too high, a tempera-

ture. This lag is due to the viscosity of the glass of which the

thermometer is made. If a thermometer be kept for some days

at a uniform temperature of, say, 20° C, and then plunged into

a bath of melting ice and the temperature observed ; and if it

then be heated to a temperatvire of 100° C, and again plunged

into the bath of melting ice, the tem-perature now observed will

be lower than the one previously obtained. The increase in the

volume of the bulb due to the high temperature does not at once

disappear, and the zero point may be depressed as much as half

a degree for some kinds of glass. This depression of the zero

point is greater when the temperature to which the thermome-

ter has been raised is greater, and when the time is greater that

the thermometer is kept at the higher temperature. The de-

pression persists .for weeks and even months before the normal

volume of the bulb is regained. It follows that while the ther-

mometer is being used at various temperatures the zero point is

constantly changing. This makes no temperature determinate

unless the value of the zero point at this particular time is

known. The value of the zero point can be obtained by cool-

ing the thermometer down to the temperature of melting ice

immediately after the desired temperature reading has been

made. Then, if no other errors affect the observation, the true

temperature is the difference between the observed temperature

and the value of the depressed zero. This is called the "de-

pressed zero method" of measuring temperature, and is the
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only method capable of yielding the most accurate results

attainable.

3. Errors due to the exposed column of the thermometer

being at a temperature different from that of the bulb.

Let T denote the true temperature of the bulb

;

t, the temperature indicated by the thermometer

;

s, the temperature of the exposed part of the stem ; and

e, the reading where the stem emerges from the bath.

Then the length of the exposed column is (i — e) degrees, and

the difference between its temperature and that of the bulb is

(y— s). Since the coefficient of apparent expansion of mercury

in glass is about 0.000156 per degree C, this exposed part of

the column, if it were to be raised in temperature {T — s)

degrees, would increase in length 0.000156 (t — e) {T — s)

degrees. That is,

T=t + 0.000156 (t - e)(T- s).

Whence T = t - 0.000156 s ^t - e^

1-0.000156 Ct- e)

or, employing approximation (5), p. 7,

T=lt- 0.000156 s (t - e)] [1 + 0.000156 (t - e)],

or, neglecting the term which involves the square of 0.000156,

r=< + 0.000156 («- s)0-e). (158)

4. Errors due to inequalities in the bore of the tube. These

errors are corrected by calibrating the tube as described in

Experiment 34.

5. Error in the graduation of the stem; that is, although

the divisions are of equal length, their length is not such as to

make just a hundred divisions between the boiling point and the

freezing point of water. Let T^ denote the true temperature

of the vapor above boiling water as determined by reading the

barometer (see pp. 176-178, and Table 12), t^ the temperature

indicated by the thermometer when it is immersed in the vapor

above boiling water, and t„ the depressed zero reading taken
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immediately after t^ was observed. Then the number of de-

grees that ought to be between the point where the thermome-

ter reads t„ and that where it reads t^ is T^, and the number
of degrees that really are between those points is (^«— *<,). It

follows that any temperature difference read from the ther-

mometer is to be multiplied by a factor

6. Errors due to changes in the pressure to which the bulb

is subjected. Any change of pressure will cause a change of

the height of the mercury column independent of any change

of temperature. Usually the experimental method can be

arranged so as to eliminate this source of error.

7. Error due to capillarity. In a thermometer of very small

bore the mercury does not move smoothly but moves

in little jumps. This error is much greater when the

temperature is falling than when rising. In fact, the

capillary action makes it impossible to measure accur-

ately a falling temperature by means of a mercury-in-

glass thermometer.

The Beckmann Theemometer. — A thermometer

designed to estimate temperatures to thousandths of a

degree requires such a long space for each degree of

scale, that, if constructed on the ordinary plan, the

range of the instrument would be limited to a few

degrees. This would require the use of a number of

instruments to cover the range of ordinary laboratory

work. When it is not required to determine definite

temperatures but only small temperature differences,

the thermometer devised by Beckmann can be used at

any temperature for which a mercury-in-glass ther-

mometer is available. The peculiarity of this ther-

mometer is a reservoir R (Fig. 67) at the upper end Fig. 67.

of the tube, by means of which the quantity of mercury in the

bulb can be increased or diminished. The scale is usually about



160 PRACTICAL PHYSICS

five centigrade degrees in length and is divided into hundredths

of a degree.

In setting the instrument, a sufficient amount of mercury

must be left in the bulb and stem to give readings between the

required temperatures. First invert the thermometer and tap

the tube so that the mercury in the reservoir will lodg-e in the

bend B at the end of the stem. Now heat the bulb until the

mercury in the stem joins the mercury in the reservoir. (See

Fig. 67.) Place in a bath one or two degrees above the upper

limit of temperatures to be measured. If now the upper end

of the tube be flipped with the finger, the mercury suspended

in the upper part of the reservoir will be jarred down, thus

separating it from the thread at the bend B. The thermometer

is now set for readings between the required temperatures.

Exp. 34. Calibration of a Mercury-in-Glass Thermometer

Object and Theory of Experiment.— If the bore of a

thermometer is not uniform in cross section, the length of the

tube corresponding to a degree difference in temperature will

not be the same at different parts of the tube. And as it is

impossible to get a perfectly uniform capillar}^, it is necessary to

determine the correction to be applied to any particular reading

to ta-ke account of the irregularity in the bore of a thermometer.

Again, if the fixed points are incorrectly placed on the stem,

this will introduce an error throughout the scale. The object

of this experiment is to construct for a given thermometer a

curve by which to correct errors due either to the irregularity

of the bore or to the location of the fixed points.

The experiment consists of two parts. First, the length of a

short thread of mercury is measured at different parts of the

tube, and from these lengths points are found throughout the

whole length of the tube that separate equal volumes. Second,

the position of the fixed points is determined by placing the ther-

mometer in the vapor of boiling water and also in melting ice.
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Manipulation and Computation. — The length of the

thread to be broken off depends upon the thermometer. If the

thread is too long, local irregularities of bore are not evident

;

if the thread is too short, its changes in length are minute. If

a dividing engine is available, a thread not more than a centi-

meter long is advisable. If no magnification is to be used and

the thermometer is an ordinary Centigrade thermometer grad-

uated from 0° to 100° in degrees, a thread some fifteen degrees

long is perhaps most satisfactory.

The separation of the calibrating thread requires som^ dex-

terity. In blowing the bulb on a thermometer tube, a slight

constriction is usually left where the bulb and tube join. If

such a thermometer is inverted and then given a sudden jar,

the thread is likely to separate at this point. If there be no

such constriction, the thread may be separated by laying the

thermometer on a table and striking the upper end of the tube

with a small block of wood. If this is not carefully done, how-

ever, cracks may be produced inside the stem near the bulb.

If the bore has an enlargement at the upper end, the column of

mercury that has been broken off is allowed to run into this

enlargement and to remain there while the tube is being cali-

brated. The bulb is then slightly warmed until a thread of

mercury of the proper length runs into the tube, and this, in

turn, is separated from the mercury in the bulb. This is the

thread that is used in the calibration. If the capillary has no

enlargement at the upper end in which to store part of the

mercury, it may be necessary to use two mercury threads to

calibrate the two ends of the tube. When this is the case, the

bulb is cooled, with a mixture of ice and salt if necessary, until

all the mercury has run into the bulb except the length that is

to be broken off. This thread is separated and run to the

farther end of the tube. In order to make measurements in

the lower end of the tube, this part of the thermometer must be

freed of mercury and another thread separated as before.

When a thread has been broken off, it is to be brought nearly

to one end of the tube and the position of both ends carefully
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read, then moved along through a quarter or a third of its

length and the positions of both ends again read, this process

being repeated until the thread has been moved to the other

end of the tube. Suppose that when this is done— a mirror

being used as suggested on p. 156, and readings being made to

twentieths of a degree— the readings are those in the first,

second, fourth, and fifth columns of the following table :—

Lower end of
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thread would be at 15°. 87; it also shows that if the bottom of

the thread were at 15°. 87 its length would be 15.°81, so that the
top of it would be at 31°.68 ; if the bottom of the thread were
at 31°. 68 its length would be 15°. 73; etc. These values are

recorded in the following table :—

Points on Scale be-

tween WHICH Vol-

umes OF Bore are

Equal
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point (100° C. or 212° F.) is defined as the temperature of the

steam produced by water boiling at sea level and latitude 45°

under a barometric pressure of 76 cm. of mercury when the

barometer is at the temperature 0° C.

Observe the barometric height, noting the temperature of the

barometer by means of the thermometer attached to the instru-

ment. Ascertain from the laboratory instructor the latitude

and altitude of the Jaboratory. From these data compute,

in the manner explained on pp. 176-178, the corrected baromet-

ric pressure H reduced to standard conditions. From a con-

sideration of the number of figures that can be

trusted in the uncorrected readings determine

which of the corrections on pp. 177, 178 it is

worth while to make.

Suspend the thermometer in the vapor of

boiling water. It must not be immersed in the

water itself nor be so near the surface that the

bulb will be spattered by drops of water, because

the temperature of boiling water is influenced by

the nature of the surface composing the vessel

and by the presence of slight quantities of dis-

solved impurities. But the temperature of the

vapor depends only upon the pressure. Re-

gnault's hypsometer consists of a reservoir R
(Fig. 70) in which the water is boiled, sur-

mounted by a tube in which the thermometer is

suspended. After passing through this tube the steam passes

through the jacket J and escapes into the air at U- M is 2k

water manometer which serves to measure any difference of

pressure between the steam inside and the air outside. If the

manometer indicates a pressure of d mm. of water, i.e. ^„ „ mm.

of mercury, then the total pressure on the surface of the boiling

water \s H + mm. Call the observed boiling point T^.

Draw the thermometer up until the upper twenty degrees or so

Fig. 70.
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of the stem is exposed. After about five minutes note the read-

ing and also the reading at the top of the stopper, draw the

thermometer up some twenty degrees farther, and, after about

five minutes more, read again at both points. Repeat until the

zero point is at the stopper. The difference between the read-

ing at the top of the mercury when the thermometer was wholly

immersed and the reading in any of the other cases is the

stem exposure correction for that particular case. Note ap-

proximately the temperature of the air in the neighborhood of

the hypsometer. From (158) and (2) calculate the stem ex-

posure correction for each case. Plot on the same sheet two

curves, one coordinating the thermometer reading at the stopper

and the observed stem exposure correction, and the other coor-

dinating the thermometer reading at the stopper and the calcu-

lated stem exposure correction.

Remove the thermometer from the hypsometer, allow it to

cool in the air to about 40° C, and then immerse it in a vessel

filled with snow or shaved ice which contains enough water to

fill the interstices. This gives the depressed zero point.

By reference to Table 12, obtain the temperature of the

vapor of water boiling at a pressure oi JI+ ..., „ Call this

true temperature T^ Then (y„ — Tt} is the error of the upper

fixe'd point, and (^^ — T„') is the correction to be applied to the

reading. Suppose that in the above example the error of the

boiling point is found to be + 0°.6, and the error of the freezing

point + 0°.8. Then the correction for the boiling point is

— 0°.6, and for the freezing point — 0°.8. If now on the same

sheet of coordinate paper on which the correction curve for

irregularities of bore was plotted, the freezing point correction

be entered along the axis of ordinates opposite the zero of ab-

scissas, and the boiling point correction be entered opposite

the observed boiling point, and these points be connected by a

straight line, as shown by the dotted line in Fig. 69, this line

gives the corrections for all intermediate points of the scale due

to the displacement of the fixed points.
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By adding the ordinates of the correction curve for the irreg-

ularities of bore— the upper curve— to the corresponding

ordinates of this correction curve for displacement of the

fixed points— the dotted line—^the lower curve in Fig. 69

is obtained. This is called the Calibration Curve of the

thermometer.

If this calibration is done with two mercury threads instead

of one, the calibration should extend from each end to a dis-

tance past the middle of the tube. The curve analogous to

that in Fig. 68 will be a continuous line, but along the region

where data were taken with both mercury threads, one branch

of the curve will be above the other. In this region find the

ratio of the ordinates of the two curves for three or four posi-

tions on the thermometer scale. This ratio must be really the

same for all points on the thermometer scale. By multiplying

any ordinate of one curve by the averages of the values found

for the ratio, the corresponding ordinate of the other curve will

be obtained. Proceeding in this manner, a continuous curve is

obtained, just as though all of the calibration had been per-

formed with a single mercury thread.

Exp. 35. Calibration of a Resistance Thermometer

Object and Theory op Experiment. — The mercury-in-

glass thermometer is unavailable for the measurement of tem-

peratures much below — 30° C, or above -|- 300° C. Although

the gas thermometer can be used for any temperature for which

a suitable material to construct the bulb can be found, it is such

a large awkward instrument, and the difficulties of the manipu-

lation are so considerable, that it is suitable only for stand-

ardizing more convenient types of thermometer. Since the

electrical resistance of metals varies continuously with the tem-

perature according to definite laws, and since the accurate

measurement of resistance is attended with no considerable

difficulty, thermometers depending upon this change of resist-

ance are in common use for measuring high and low tempera-
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tures. Platinum is the material usually employed, both because

its resistance at any given temperature does not change with

time, and because the law connecting the temperature and

resistance of a wire made of it is expressible by a simple for-

mula throughout a very wide range of temperatures. It has

been shown by experiment that if iJo represents the resistance

of a piece of metal at 0° C, then throughout a more or less

definite range of temperatures the resistance ij^ at t° C. is

expressible by the equation

Rt =R^\l + at + U^^, (160)

where i^o, a, and h are constants. In order that a resistance

thermometer may be used, these three constants must be

known. The object of this experiment is to determine the

values of these constants for a given resistance thermometer.

If the resistance of the wire at three different temperatures

be known, three equations of the form of (160) are obtained,

and from these equations the values of the three constants can

be calculated. The freezing point and boiling point of water

are two convenient temperatures for the experiment. The re-

maining temperature can be the boiling point of any convenient

substance, e.g. sulphur, which boils at 444°. 5 C. But from

measurements of the resistance of wires at very low tempera-

tures, Dewar and E'leming have shown that at the absolute zero

of temperature it is highly probable that the resistance of all

pure metals is zero. Assuming this relation, the resistance of

the thermometer wire need be measured at but two tempera-

tures. This simplified process gives the values of the constants

in (160) with sufficient accuracy for most purposes. Repre-

senting the resistance of the thermometer wire at the tempera-

tures t-^, ^2' ^^^ ^^^ absolute zero by the symbols Rt^, Rt,^, and

-^-273' ^^ have

Ri^ = ii!o [1 + «<i + K^l

Ri^^R^ll + at^ + U^^-]

R-m = -So [1 - 273 a + (273)26]

(161)
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From these three equations the values of the three constants a, 6,

and Hq can be obtained. These constants once being known,

the resistance of the wire at any unknown temperature can be

determined experimentally and the temperature calculated

from (160). A convenient way of finding the values of the

three constants is to set 11^=— , and then solve (161) by

determinants. <>

The Wheatstone bridge is to be used to determine the re-

3^((gj^ sistances. In texts on General

c/o ^1
1 Physics it is shown that, if the

^° \ g;^Galv.
^

(^ r symbols have the meanings indi-

_!/" ^ -1 cated in the figure,

^'" ^ = h (162)

If the resistance ^g ^^^ ^^® lengths Zg and l^ are known, the

other resistance i2j can at once be calculated.

Manipulation and Computation. — The resistance ther-

mometer consists of fine platinum wire wound on a mica frame

enclosed in a wrought-iron capsule. In order to diminish

errors due to a change in the temperature of the leads which

run down into the capsule, a second pair of leads- precisely like

the first is placed side by side with them but short circuited at

Fig. 72.

the bottom. By measuring at each temperature the resistance

between the terminals of the coil and also the resistance between

the terminals of the dummy leads the change in the resistance

of the coil alone can be obtained, so that any change in the

resistance of the leads does not need to be taken into account.

The particular form of Wheatstone bridge called the "slide

wire " or " meter " bridge will be used in this experiment. This

apparatus is illustrated in Fig. 71. A uniform wire AO is

stretched over a divided scale. The ends of this wire are con-
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iiected to a parallel copper rod in which are two gaps. In one

of these gaps is inserted the resistance to be measured M^, and

in the other gap a resistance box M^. The current enters at

one end of the bridge and leaves at the other. One side of the

galvanometer is connected to the binding post B and the other

to a key K^ which can slide back and forth and make contact

at any point on the wire AC
Whenever the keys are closed, K^^ is closed first and then jfiTg.

Until the bridge is nearly balanced K^ is closed for as short a

time as possible, and as soon as IC^ is open IC^^ is opened. If a

mirror galvanometer with its telescope and scale are used, the

telescope and scale are to be adjusted as described on p. 44.

With the resistance thermometer packed in a bath of melting

ice, make the connections indicated in Fig. 71. With no re-

sistance in the resistance box and K^ about halfway from A
to C, close the circuits just long enough to see in which direction

the pointer of the galvanometer swings. Put a large resistance

in the box, and again see in which direction the pointer swings.

If the direction of swing is the same as before, something is

wrong with the connections or else a larger resistance is needed

in the box. If the pointer swings out in the opposite direction,

the resistance needed in the box lies between zero and the re-

sistance now in the box. Try half the resistance now in the

box and note the direction of swing. Proceeding in this way, a

value of the resistance can soon be found for which there is not

much movement of the pointer. The remaining adjustment

is to be made by means of K^, finding two positions of K^ such

that the deflections for the two are in opposite directions,

and then closing down upon a point where there is no deflec-

tion. When no deflection is obtained, note the resistance in

the box and the reading on the bridge scale. Note also how
far the key can be moved in each direction without producing

any observable deflection. Then, from (162), the value of the

resistance being measured is

B, = rJ^. (163)
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In the same manner find the resistance of the dummy leads.

If the temperature of the resistance thermometer when in

the bath of melting ice is represented by ij, then the difference

between the two resistances just found is the value of Rf in

(161).

Proceeding in the same manner, find the resistance of the

platinum coil when immersed in a steam bath. If this tem-

perature be denoted by t^, the resistance will be the value of

B,^ in (161).

The values of the three constants can now be determined

from (161). On substituting their values in (160), an equa-

tion is obtained which gives the relation between the tempera-

ture of the coil and its resistance. Such an equation, containing

experimentally determined constants, is called an empirical

formula.

Substitute for t in this empirical formula the values — 200°,

— 100°, 0°, 100°, 200°, and compute the corresponding values

of Rf With these values plot a curve coordinating R and t.

The accuracy of the preceding work should be tested by meas-

uring the resistance of the thermometer coil at two or three

known temperatures and comparing these observed values with

the corresponding values given by the curve.

Exp. 36. The Flash Test, Fire Test, and Cold Test of an Oil

Object and Theory of Experiment. — If an inflam-

mable gas is mixed with air in proper proportion, the mixture

will explode on ignition. The air above a volatile oil is satu-

rated with the oil vapor. If the temperature of the oil is

slowly raised, the proportion of oil vapor in the air will in-

crease until, at a certain temperature, the saturated air will

become an explosive mixture. This temperature is called the

flashpoint of the oil. If the temperature of the oil is still

farther increased, a point will be reached at which the oil will

evolve vapor so rapidly that, when ignited, it will burn con-

tinuously. This is called the fire test of the oil. The cold
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test of an oil is the lowest, temperature at which the oil will

flow. The object of this experiment is to make a flash test,

fire test, and cold test of a sample of oil.

The general method of determining the flash point is to heat

the specimen gradually in a covered cup and at frequent inter-

vals pass a small flame near the surface of the oil. In making

a fire test, the specimen is heated in an open cup and the tem-

perature is noted at which the vapor will burn continuously

when ignited. The flash point depends upon (a) the rate of

heating, (6) the depth and diameter of the cup, (c) whether

the cup is closed or open, {d) the quantity of oil used, (e) the

size of the testing flame and its distance from the surface

of the oil. Consequently, the size and design of the testing

apparatus and the method of carrying out a determination are

explicitly described in the legislative enact-

ments of the various states.

Manipulation and Computation. —
The form of apparatus most commonly used

in this country for the flash point is the "New
York State Board of Health Tester." This

consists (Fig. 73) of a seamless copper cup C
covered by a glass plate perforated with two

holes— one for the insertion of the ther-

mometer and another for the testing flame.

This cup is heated in a water or air bath B
by means of an alcohol lamp or small Bunsen

burner. The whole apparatus should be

placed in a sheet-iron pan filled with sand.

In using this apparatus to test illuminating

oils, the New York State Board of Health

publish* the following regulations :
—

"Remove the oil cup and fill the water

bath with cold water up to the mark on the inside. Replace

the oil cup and pour in enough oil to fill it to within one eighth

FiQ. 73.

* Report of N. Y. State Board of Health, 1882.
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of an inch of the flange joining the.cup and the vapor chamber

above. Care must be taken that the oil does not flow over the

flange. Remove all air bubbles with a piece of dry paper.

Place the glass cover on the oil cup, and so adjust the ther-

mometer that its bulb shall be just covered with oil.

" If an alcohol lamp be employed for heating the water bath,

the wick should be carefully trimmed and adjusted to a small-

flame. A small Bunsen burner may be used in place of the

lamp. The rate of heating should be about two degrees per

minute, and in no case exceed three degrees.*

" As a flash torch, a small gas jet one quarter of an inch in

length should be employed. When gas is not at hand, employ

a piece of waxed linen twine. The flame in this case, however,

should be small.

"When the temperature of the oil has reached 85° F., the

testing should commence. To this end insert the torch into

the opening in the cover, passing it in at such an angle as to

well clear the cover, and to a distance about halfway between

the oil and the cover. The motion should be steady and uni-

form, rapid and without a pause. This should be repeated at

every two degrees' rise of the thermometer until the thermom-

eter has reached 95°, when the lamp should be removed and the

testings should be made for each degree of temperature until

100° is reached. After this the lamp may be replaced if neces-

sary and the testings continued for each two degrees.

" The appearance of a slight bluish flame shows that the

flashing point has been reached.

" In every case note the temperature of the oil before intro-

ducing the torch. The flame of the torch must not come in

contact with the oil.

" The -water-bath should be filled with cold water for each

separate test, and the oil from a previous test carefully wiped

from the oil cup."

Make five determinations of the flash point and take the mean.

* This refers to degrees Fahrenheit.
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After each determination, remove the cover from the oil cup and

blow the burnt gases out of the cup.

After the flash point has been determined, remove the cover

from the oil cup and continue to heat the oil at the rate of two

degrees per minute. About every half minute test the oil with

the small flame as above described. The lowest temperature at

which the vapor of oil will burn continuously is the fire test.

Remove the thermometer and smother the flame by placing on

top of the oil cup a piece of asbestos board. Such a damper

should always be at hand for emergencies.

In the case of lubricating oils the method of finding the flash

point and the fire test is exactly as above described except that

the rate of heating should be 15° F. per minute and the testing

flame should be applied first when the oil is about 200° F.

In making the cold test, a glass vial or boiling tube of about

100 CO. capacity is one fourth filled with the oil under investi-

gation, and then placed in a freezing mixture of ice and salt.

When all of the oil has congealed, it is removed from the freez-

ing mixture and thoroughly stirred with a thermometer until it

is sufficiently softened to flow from one end of the tube to the

other. The temperature at which this occurs is the cold test of

the oil.

Exp. 37. Relation between Boiling Point and Concentration

of a Solution.

Object and Theory of Experiment.— The object of

this experiment is to find the relation between the boiling point

and the concentration of a solution of common salt.

The boiling point of a solution of a non-volatile substance is

higher than the boiling point of the pure solvent. If a current

of steam be passed into an aqueous solution below its boiling

point, steam will be condensed in the solution until the heat

thereby liberated raises the temperature of the solution to its

boiling point. Consequently steam that passes through a solu-

tion will leave it at the boiling point of the solution and not at
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that of pure water. However, as the steam eBcapes into the

space above the solution it cools somewhat by expansion, and

wherever it comes into contact with the walls of the vessel,

with the thermometer, or with any body that can gradually

conduct away the heat given up by the condensation of the

steam, this cooling continues until the steam becomes saturated,

that is, until its temperature falls to the boiling point of pure >

water. Consequently, in determining the boiling point of the

pure solvent the thermometer is suspended in the space above

the liquid, while in determining the boiling point of a solution

the thermometer bulb must be immersed in the solution.

Buchanan has recently utilized the principle stated in the

preceding paragraph for finding the boiling point of a saturated

solution. A quantity of the pure solute is placed in the bottom

of a tall test tube containing a thermometer. A current of

steam is sent through a glass tube extending to the bottom of

the test tube until a saturated aqueous solution of the given

solute is obtained. As long as any of the solute remains un-

dissolved and the current of steam is uninterrupted, the tem-

perature of this saturated solution remains at

its boiling point.

Manipulation and Computation. — The

apparatus used in determining the boiling point

of a dilute solution consists of a flasli provided

with a cork fitted with a thermometer and con-

denser. Without the condenser the solution

would gradually increase in concentration

through the loss of steam. To prevent "bump-

ing," a handful of clean dry pebbles or pieces

of broken glass is placed in the flask. With

the flask about one third filled with a solution

of some 50 g. of sodium chlorid to each liter

of water, insert the thermometer until its bulb

is 5 cm. or more above the surface of the liquid.

With the condenser in place, heat the solution until it boils

fairly rapidly. Read the thermometer and also the laboratory

Fig. 74.
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barometer. Push the thermometer down until its bulb is in

the boiling solution, and when it has become steady read it

again. From the corrected barometer reading (see pp. 176-

178 and Table 12) the true temperature of the vapor of boiling

water can be found. This value minus the reading of the ther-

mometer when in the vapor is the correction to be applied to

the given thermometer in the neighborhood of 100°. This cor-

rection added to the reading of the thermometer when in the

boiling solution gives the boiling point of this solution. In the

same manner find the boiling points of solutions which contain

respectively three and five times as large a proportion of salt.

To find the boiling point of a saturated solution, fasten a

large boiling tube in a vertical position in a retort stand, and

fill the tube to a depth of one or two centimeters with salt.

Suspend in the tube the same thermometer used before so that

the bulb just touches the layer of salt and then push halfway

through the layer of salt the end of a glass tube in which flows

a current of steam. When the bulb of the thermometer is sub-

merged in the solution formed by the salt and condensed steam,

observe the temperature. When the correction determined in

the first part of the experiment is applied to this reading, it

gives the required boiling point.

Plot a curve showing the relation between concentration and

corrected boiling point. The concentrations may be expressed

in grams of salt per liter of water, and the concentration of a

saturated solution of sodium chlorid may be taken as 396.5 g.

per liter. The temperature of the vapor above the boiling

solutions is the boiling point of a solution of zero concentration.

By the method outlined on pp. 10-12 find an empirical equa-

tion connecting the concentration and boiling point of a sodium

chlorid solution.



CHAPTER XI

EXPANSION

If a body has at 0° a length If, and -at t° a length l^ it is found

that the relation between length and temperature is usually ex-

pressed very nearly by the equation

I, = lo(l + «0. (164)

where « is a constant for any one substance and is called the

coefficient of linear expansion of that substance.

Similarly, if a body has at 0° a volume Wq and at t° a volume

Vf, it is found that the relation between volume and tempera-

ture is usually expressed very nearly by the equation

^t = ^0 (1 + 70' (165)

where 7 is a constant for any one substance and is called the

coefficient of cubical expansion of that substance.

In the case of gases it is shown in texts on General Physics

that if p, V, m, and T denote respectively the pressure, volume,

mass, and absolute temperature of the gas,

pv=RmT, (166)

where i2 is a constant which depends only upon the units

chosen and not at all upon the nature of the gas nor any

other condition. (166) is obtained by combining Boyle's and

Charles's laws and is known as the Fundamental Law of Gases.

REDUCTION or BAROMETRIC READINGS

If the Torricellian vacuum above a barometric column were

devoid of matter and if there were no capillary force between

the mercury and the tube, the weight per unit cross section of

176
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a barometric column would equal the pressure of the atmos-

phere at the place where the barometer is situated. The space

above the mercury column is, however, filled with mercury

vapor which exerts a small pressure depressing the mercury,

and the capillary action between the mercury and the glass tube

also diminishes the height to which the mercury rises.

Again, even if the pressure of the atmosphere does not change,

the actual height of the mercury column may be altered in two

ways : first, by a change of temperature which not only alters

the density of the mercury in the barometer and consequently

its height, but which also alters the length of the scale used to

measure the height ; second, by a change in the force of gravity

acting on the mercury as it is moved to different parts of the

earth's surface. Consequently, in order that barometric read-

ings taken at different temperatures and at different parts of the

earth's surface may be compared with one another, they must

be reduced to the heights that would have been observed if the

barometer had been at some standard temperature and at some

standard position on the earth's surface. The standard condi-

tions arbitrarily selected are the temperature of melting ice and

the altitude of the sea level at latitude 45°.

In precise work a barometric reading must be adjusted in the

above four particulars, of which two are corrections and two

are reductions to standard conditions. The method of making

these corrections and reductions to standard conditions will

now be considered.

1. Temperature. Let A and p represent the observed height

and the density of the mercury at t°, and let v represent the

volume of mass m of mercury at this temperature. Let Aqi Pai

and ^0 represent the corresponding quantities at 0° C. Then

pgh = p^g\ and m = vp = v^p^. (167)

If /3 denotes the coefficient of cubical expansion of mercury,

v^v.il + ^f). .

Whence ^ = —^. (168)
V 1+ ^t
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And since, from (167), -£ = ^ and £- = ^,

it follows that ^ = —^. (169)

On using approximation (•^),p. 7, the above equation reduces to

Ao % A (1 - /30- (170)

But the brass scale used to measure the height A is ruled so

as to He correct at 0° C. That is, a space on the scale having

at 0° unit length has at t° a length (1 + at), where a is the co-

efficient of linear expansion of the brass scale. Whence, a dis-

tance which at f is presumably A units long is really h (1+ a^)

units long. Consequently, the barometric height that would be

observed if the barometer were cooled to 0° C. is

A„ % A (1 + «0 (1 - /SO.

or, employing approximation (2), p. 7,

Ao = A[l + (a-^)«]. (171)

Since /8 = 0.000182 and « = 0.000018 per degree centigrade,

(171) becomes
A^ =A(l-0. 00016 (172)

if the temperatures are taken in centigrade degrees. If, how-

ever, the temperatures are taken in Fahrenheit degrees

A32 % A [1 - 0.00009 (t - 32)]. (173)

2. Depression due to Capillarity. This depends upon the

diameter of the bore of the glass tube. Its magnitude may be

taken from the following table :
—

Bore of tube in mm. 2 4 6 8 10

Depression in mm. 2.18 0.70 0.25 0.10 0.04

3. Reduction to Sea Level at Latitude 45°. This is most easily

effected by means of Table 11.

4. Depression due to Pressure of Mercury Vapor. This may
be neglected except in the most refined work. The values of
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the vapor pressure of mercury at different temperatures are

given in Table 14.

Exp. 38. Determination of the Coefficient of Linear Expansion

of a Solid

Object and Theory op Experiment. — The object of this

experiment is to determine the coefficient of linear expansion

of a metal. If Zj denotes the length of the body at tempera-

ture
<i
and ^2 its length at temperature t^, we have, from (164),

Zi = Zo(l + ««0. (174)

and Z2 = ^o(l + «*2)- Ci-TB)

On dividing (175) by (174) we obtain

^2 ^ 1 + a«.

Zj 1 + «tj

If a is very small, we may employ approximation (5) on

p. 7, obtaining ,

^ = (l + a«2)(l-««i).

or, employing approximation (2),

?2=l+««2-«^i-

Wience « = _k^lii_. (176)

If the specimen being studied is in the form of a long wire

or rod, it may be suspended vertically, surrounded by a steam

jacket, and its change of length obtained by means of the form

of optical lever described in Experiment 26. If the specimen

is in the form of a short rod or tube, either of the following

methods may be used.

In the first method one end of the specimen is supported by

means of a wye A (Fig. 75), while the other end £ is sup-

ported by a form of optical lever devised by Dr. Miiller.

This optical lever is composed of a stirrup-shaped piece of
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steel OEFD (Fig. 76) on which are ground three parallel knife

edges, Q, EF, and B The stirrup is supported on the edges

Fig. 75.

r 1

• V

*'*!

(7 and D, and the specimen rests on the edge JEF. Attached

to the stirrup are a mirror M and a pair of counterpoising

masses HH' . When the specimen changes

its length the optical lever is tilted through

a small angle.

The length ?j of the rod at t.^ is obtained

directly by measuring the distance between

the knife edges A and B. The change of

length is obtained by measuring the angle

of rotation of the optical lever and the

distance from the line of the knife edges

C and I) to the knife edge ^EF. The angle

of rotation is obtained by means of a tele-

scope and vertical scale. If the telescope is

at the level of the miror and the latter is vertical, the angle of

incidence of the light ray that comes to the telescope is 0°.

When the temperature of the specimen rises, the optical lever

is tilted through an angle 6, Thus the angle of incidence be-

comes 6 (Fig. 77), and, since the angle of reflection equals the

angle of incidence, the angle OpO' = 2 0. Denoting the dis-

tance of the scale from the mirror by L and the deflection 0'

by s, we have "

tan 2^ = 4-L

•

-ntl^SJirffj^

Fig. 76.
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If the distance from the line of the knife edges G and B to

the knife edge EF (Fig. 76) be denoted by m, we have also

(177)
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moves over the face of a divided circle. If the roller carrying

the pointer is situated directly below the wye supporting the

movable end of the specimen, the indication of the pointer will

be unaffected by any change in the temperature of the carriage.

When the rod is heated, the carriage is pushed forward a

distance ( ?2 ~ ^i ). ^^^ ^^^ pointer is turned through an angle 0.

During this motion the carriage has advance.d a certain distance

with respect to the roller, and the bedplate has moved backward

an equal distance with respect to the roller. That is, with

respect to the bedplate the roller has moved forward half as

far as has the carriage, i.e. the roller has moved a distance

Fig. 78.

iCh~h^- ^^ *^^ diameter of the roller is called d, then the

distance that the roller has moved on the bedplate is also
a

Trd. Whence
360

and, therefore, from (176),

«= ^ . (179)

Manipulation and Computation. — In the case of Miil-

ler's form of optical lever, find the distance from the line of the

knife edges C and Z> to the knife edge HF with a dividing

engine. After assembling the apparatus set up the telescope

and scale about a meter from the optical lever and see that the

telescope is about at the level of the mirror. After adjusting



EXPANSION 183

the telescope and scale as directed on p. 44 set the optical lever

in such a position that when the eye is at the level of the

telescope and close to it, the image of the telescope in the

mirror can be seen. This makes the optical lever vertical.

Measure l^, the distance between the wyes on which the specimen

rests, and L, the distance from the mirror to the vertical scale.

Note the readings of both thermometers, take the scale reading

in the telescope, send a current of steam for some minutes

through the jacket surrounding the specimen, and then take the

new scale reading and again read both thermometers. By (158)

correct the thermometer readings for steam exposure. Calcu-

late a by (178).

In the case of the roller method, measure the diameter of the

roller with a micrometer caliper. Assemble the apparatus,

being careful that the roller carrying the pointer is normal to

the length of the bedplate, and also that it is at the center of

the divided circle. It is well to start with the pointer about

as far to one side of the vertical as it will come to be on the

other side of the vertical. It can be set in this way after a

preliminary experiment in which the angle through which it

will turn is determined roughly. The carriage should be so

placed that the wye is directly above the roller that carries the

pointer. Measure Zj, the distance between the edges of the two

wyes on which the specimen rests, and note the readings of both

thermometers and of the pointer. Send a current of steam for

some minutes through the jacket surrounding the specimen and

then observe the*new position of the pointer and again read both

thermometers. By (158) correct the thermometer readings for

steam exposure. Calculate a by (179).

Exp. 39. Determination of the Absolute Coefficient of Expan-
sion of a Liquid by the Method of Balancing Columns

Object and Theory op Experiment. — The object of this

experiment is to determine the coeflficient of expansion of mer-

cury by a method which is independent of the change in
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volume of the containing vessel. The method employed in

this experiment is to determine the coefficient of expansion of

the liquid from the ratio of its densities at different tempera-

tures.

The apparatus used by Regnault is illustrated in Figs. 79

and 80. Consider a W-shaped tube ABCDEF containing

mercury, having the branch A kept at a high temperature by
means of a steam jacket, and the remainder of the apparatus

Fig. 79.

at the temperature of the room by means of water jackets.

The mercury columns A and F are connected at the top by the

tube (7, so that the pressures of the mercury in both columns

are the same at this level. At the bottom the two columns A
and F are kept separated by means of compressed air in the

tube CD. Let ITj, H^, h^, and h^ represent the differences in

level indicated in the figure. Let the temperature and density

of the mercury in the hot part of the apparatus be denoted bj'
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<2 and p^ respectively, and the temperature and density of the

remainder of the mercury by t^ and py Let P denote the

atmospheric pressure and P' the pressure of the air in P.

Then the pressure at the bottom of the ^-column is (P + p^gH^^
and the pressure at the bottom of the i)-column is (P' + Pighj).

Now these are pressures at the same level in a fluid at rest and

are therefore equal. That is,

P + p,gff, = P'+p,gh,. (180)

In the same w&j for the ^-column and the (7-column,

P+ p^H^ = P' + p,gh^. (181)

On subtracting (181) from (180) and solving for ^i

P2 ^1 - «! + «2

From the figure ^^ + 6 = Ag + «.

Whence, Aj.— }i,^ = a—h.

••^i-(^i-^2) = -^i- (,a-h~) = H^-a.
So that (182) becomes

Pi= ^i
. (183)

Pi -02 ~ *

Now the density of a given mass of mercury is inversely

proportional to its volume. So that, if yS denotes the coefficient

of expansion of the mercury,

&)=!!l = l + /3«i, (184)
Pi ^0

and Psi = h = l + ^t^. (185)
Pi "o

On dividing (185) by (184) a value is obtained for ^. If this

P2

value is equated to that in (183), and the resulting equation

solved for /3, we obtain
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Manipulation and Computation.— An instructor will

pump air into the reservoir R so that the mercury rises in the

tubes A and F until its surface stands about at the axis of the

tube Gi. Water should flow through the water jacket only

slowly and its temperature, ij, should be near that of the room.

This temperature is to be taken by a thermometer, and the tem-

perature of the hot jacket calculated from a reading of the

barometer. (See pp. 176-178, and Table 12.)

Measure -Hg with a meter stick and a with a cathetometer.

Make at least five independent determinations of a, readjusting

the cathetometer before each one, and use the mean.

Exp. 40. Determination of the Coefficient of Cubical Expansion

of Glass

Object and Theory op Experiment.— When a vessel

filled with liquid is raised in temperature, the apparent expan-

sion of the liquid depends upon the coeiiicients of cubical ex-

pansion of the liquid and the containing vessel. If the apparent

expansion is observed and the coefficient of expansion of either

the liquid or the containing vessel is knoAvn, then the coefficient

of expansion of the other can be determined. The object of

this experiment is to determine the coefficient of cubical expan-

sion of a glass bulb from an observation of the apparent expan-

sion of mercury contained in it. The absolute coefficient of

expansion of mercury is supposed to be known from the pre-

ceding experiment.

Let the bulb be filled with mercury at the temperature t-^ and

then be heated to t^. This will cause some of the mercury to

be expelled. A bulb used in this manner is called a weight

dilatometer.

Let itfj and pj represent the mass and the density of the

mercury contained in the bulb at t-^;

M^ and p^, the mass and the density of the mercury

contained in the bulb at t^;
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f 1 and v^, the respective volumes of the mercury in the

bulb at t^° and t^";

v^-, the volume at t^ of the mercury which at t-^ filled

the bulb

;

7, the mean coefficient of cubical expansion of glass be-

tween ij° and t^;

y8, the mean coefficient of cubical expansion of mercury
between t-^ and t'^.

From (61) we have

^1 =^ v^ = —\ «2 =-^- (187)
Px Pi Pi

Since yS and 7 are both small, it may be shown from (165) in

the same way that (176) was developed from (164), that

^= V.~''\ a"d 7 =
''^"''1

• (188)
^1^2-^1) '^1(^2-^)

On substituting in (188) the values of v^, v^, and Vg' from (187),

and eliminating Q from the resulting equations, we get

or, writing mj for the mass of the mercury expelled when the

bulb is heated from t-^ to t^,

Manipulation and Computation.—A convenient form

of weight dilatometer for this experiment is a specific gravity

bottle having a perforated glass stopper. After weighing the

bottle, nearly fill it with mercury, and, without inserting the

stopper, heat very carefully until all observable air bubbles

have been removed. An iron wire will greatly facilitate the

drawing out of these bubbles. Have under the bottle a vessel

to catch the mercury in case the heating should be done too

rapidly and the bottle thereby be broken.
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After the bottle has cooled enough to be held comfortably in

the bare hand, place it on a cork stool in a beaker and pack it to

a little below the opening with shaved ice. After -five or ten

minutes insert the stopper, being sure that there is enough mer-

cury in the bottle to fill the capillary and leave a tiny globule

above it. If this globule does not decrease in size in a few

moments, brush it off, and then begin slowly heating the beaker.

As fast as mercury comes out of the capillary, brush it off into a

piece of paper bent into a cup without any hole in the bottom.

When the mercury has stopped coming out, remove the flame

and allow the beaker to cool.

Meantime read the barometer in order to determine the tem-

perature of the hot mercury (cf . pp. 176-178, and Table 12), and

then fold the paper containing the extruded mercury so that

the latter will not run out and by the method of vibrations

weigh paper and mercury. Then weigh the paper alone, and

after the specific gravity bottle has cooled to the temperature of

the room, weigh the bottle and the mercury which it still con-

tains. The difference between the weight of the paper with

the mercury in it and the weight of the paper alone is m^ ; the

difference between the weight of the bottle with the mercury

left in it and the weight of the bottle alone is M^ ; t^ is zero, and

^2 is the temperature of boiling water. The value of /3 may be

taken as 0.000182 per degree C.

Exp. 41. Determination of the Coeflacient of Expansion of a

Gas by Means of an Air Thermometer

Object and Theory of Experiment.— If a given mass

of any substance is heated from 0° to 1°, and the pressure upon

it kept constant, the ratio of the increase of volume to the initial

volume is called the coefficient of expansion of the substance. If

it is heated from 0° to 1°, and its volume kept constant, the

ratio of the increase of pressure to the initial pressure is called

the temperature coefficient of pressure of the substance. In the

succeeding paragraph it will be shown that for a perfect gas
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these two coefficients are equal. Since it is easier to measure

the pressure of a gas under constant volume than to measure

the volume under constant pressure, the coefficient of expansion

will be determined in the present experiment from observations

of the changes produced in the pressure of a gas when its mass

and volume remain nearly constant and its temperature changes.

Consider a given mass of gas at temperature 0° C. or Tq

absolute, pressure pg, and volume Vf^. When it is heated to

t° C, i.e. (^Tf^ + ty absolute, let the pressure be represented

by pt and the volume by Vi. From the fundamental law of

gases, (166),

^=i2m=^. (190)

If the volume be kept constant, which is denoted below by the

subscript v outside of the parenthesis, the Vf in (190) becomes

equal to the Vq, and (190) solved for — gives

^JPlUlo),' (191)
To V Pot A

or, if the pressure be kept constant,

1 _fvt-v^ (192)

But the coefficient of expansion of a gas, j3, is, from its definition,

given by

It follows that

h'^"^)- '-''''

That is, the coefficient of expansion of a gas is equal to the

reciprocal of its absolute temperature and is also equal to its

pressure coefficient.

An apparatus well suited for determining the pressure coeffi-

cient is some form of Jolly's Air Thermometer. This consists
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(Fig. 81) of a glass bulb B filled with air or other gas, connected

to an open manometer tube M filled with mer-

cury. Immediately below the bulb is a tube

containing an index finger F made of colored

enamel. The volume of the gas is made defi-

nite by adjusting the plunger P until the mer-

cury surface is brought to the point F. The
pressure of the gas in the bulb is measured by
the difference between the levels of the mer-

cury .surface at F and the mercury surface in

tlie manometer tube. The bulb is inclosed by
a vessel in which can be placed water or ice.

i 2) is a drying tube used in filling the bulb.

On account of the temperature of the small

amount of gas in the exposed part of the bulb

being different from that in the jacketed part

of the bulb, and also on account of the change

in the volume of the bulb when its temperature

is changed, (193) cannot be used in its present

Fig. 81. simple form. The corresponding equation in

which these facts are taken into account will now be derived.

Let Pq denote pressure in bulb when at 0° C. ( Ti^° absolute)

;

Pi, pressure in bulb when at t° C;
v^, volume of jacketed part of bulb at 0° C.

;

Vf, volume of jacketed part of bulb at t° C.

;

tHq, mass of gas in jacketed part of bulb when at 0° C;
»M(, mass of gas in jacketed part of bulb when at ^° C.

;

Vf^', volume of exposed part of bulb when jacketed part

is at 0° C.

;

«/, volume of exposed part of bulb when jacketed part

is a.tt° C;
wig', mass of gas in exposed part of bulb when jacketed

part is at 0° C.

;

w?/, mass of gas in exposed part of bulb when jacketed

part is at t° C.
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Without great error, the temperature of the exposed part of

the bulb may be assumed to be constant and equal to that

of the room. Let this temperature be denoted by t'° C. It

follows that v/ = v^

.

Applying (166) to (a) the jacketed part of the bulb when at

0°, (hj the jacketed part of the bulb when at t°, (c) the exposed

part of the bulb when the jacketed part is at 0°, and (c?) the

exposed part of the bulb when the jacketed part is at f°, the

following four equations are obtained : —

PtVi = Bmt(^TQ + t'),

p,v,' = Bm:(^To + t'}.

Since the mass of gas in the apparatus remains constant^ we
have also

Wq + Wq = ?W( + m/

.

Eliminating from these five equations the four unknown
masses, we get

Representing by 7 the coefficient of cubical expansion of glass

between the temperatures 0° and t° C, we have

Substituting this value in (194), remembering that, from (193),

1 V '

Tq = — , and denoting the constant ratio -2- by k, we obtain

?.(i+TT5?)=^'(rTl+rw> ^"«>

When (195) is solved for /3 the resulting formula is very

long. This procedure is, therefore, seldom adopted. One of

the methods which may instead be employed to find /3 is the

following : It will be seen that as long as the room temperature
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remains the same the left member of (195) does not change.

It follows that the right member is also constant. That is, if t

had some value t^, this right member would have the same

value as if t had some other value t^. That is,

^\1 + ^/ 1+/3W ^^l+/S^/l + y8«7 ^ ^

If ^2 is chosen as the room temperature t', if the subscript 1 is

dropped, and if p' is used to denote the pressure in the bulb

when all the gas in it is at the temperature t'
, (196) becomes

.1 + /3«' ^ 1 + y8«7 ^\\ + ^ri + ^t'

Whence, /3
= Aj + 7^^ + /fc) -^0 +7^ + ^)

, (jgg^

It will be seen tlrat if h and 7 were both zero and if the tem-

perature t were 0°, (198) would reduce to (193), as it should.

Manipulation and Computation. — The air in the bulb

has been dried once for all and the upper opening of the bulb

permanently sealed. Hang a thermometer in the air just out-

side of the bulb and adjust the plunger until the mercury

touches the index F. After a few minutes, when the tempera-

ture seems steady and the top of the mercury stays at F, set

the slider S at the top of the column in M and read both the

position of the slider and the temperature in the jacket. Then

fill the jacket with shaved ice. Notice the index frequently for

several minutes, readjusting whenever the mercury is not just

touching it. When no more adjustment seems necessar}', set the

slider S at the top of the mercury in M and read its position.

Read also the laboratory barometer.

For the ice substitute water at a temperature of about 40°' C,
and after allowing a few moments for the bulb to aquire the tem-

perature of the water, begin slowly heating the water by pass-

ing steam into it. While the* water is heating, read on the

manometer scale the height of F. This can be done best with
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a cathetometer, but may be effected by a straightedge held

horizontal with the aid of a level. As the water warms adjust

the plunger occasionally, and when the steam is bubbling rapidly

through the water in the jacket and no further adjustment

seems necessary, set the" slider and read it again. Read also

a thermometer which is pretty well immersed in the jacket.

When through with the apparatus, draw off the water in tlie

jacket and leave the mercury at about the same height in both

tubes.

The barometric height plus or minus the difference between

the heights of S and I' when the bulb was at the room tempera-

ture gives p'. The corresponding quantity when ice was in

the jacket gives one value for pf, the t in this case being 0°.

k will be given by an instructor, and 7 may be taken as 0.000027

per degree C. Use (198) to get one value for /3. Find a

second value for yS by using for pt the pressure found when the

bulb was surrounded by the hot water and for t the tempera-

ture of that water.,



CHAPTER XII

VAPORS

Exp. 42. Determination of the Maximum Vapor Pressure of

a Liquid at Temperatures below ioo°C.

(STATIC METHOD)

Object and Theory of Experiment.—When a liquid

evaporates in a closed space, the vapor formed produces on the

surface of the liquid and on the inclosing walls a pressure

which increases with the mass of vapor and with the tempera-

ture. For a given temperature the vapor pressure* reaches a

maximum value when the space is saturated. The object of

this experiment is to determine the pressure of saturated

aqueous vapor at temperatures from about 50° C. to 100° C.

In the method to be used in this experiment, the vapor pres-

sure is determined from the decrease in the height of a barome-

ter column produced by a small quantity of the specimen which

is introduced into the vacuous space above the mercury. The
apparatus (Fig. 82) consists of a barometer tube, the upper

end of which is enlarged into a narrow bulb and its lower end

joined to an open manometer tube, M. Opening into the hori-

zontal tube joining the barometer and manometer is an iron

cylinder filled with mercury. The height of mercury in the

two tubes can be varied by means of a plunger, P, in this cylin-

der. A small enamel finger, F, in the bulb of the barometer

tube serves as a convenient fixed point from which heights can

* The expression vapor tension is sometimes used instead of vapor pressure

to denote elastic stress exerted by a vapor. Careful writers, however, use the

word pressure to denote a push, and tension to denote a pull. Since vapors and

gases cannot exert a pull, the term vapor tension is a misnomer.

194



VAPORS 195

be measured. The vapor being studied can be brought to the

desired temperature by means of a water bath surrounding

the bulb.

The pressure in the tube M at the level of

the mercury surface at S is the atmospheric

pressure. The pressure of the vapor in the

bulb is less than this by the pressure due to

the column of liquid between the levels of aS*

and F.

Manipulation and Computation.— The
bulb has been freed from air, a specimen of air-

free water introduced, aud the upper end of

the bulb permanently sealed.

Observe the atmospheric pressure from the

laboratory standard barometer. Fill the water

jacket with water and pass steam into it until

it reaches a temperature of about 45° C. On
account of danger of cracking the glass, the

current of steam should not be directed against

the bulb nor against its jacket. Hold the
,

temperature as nearly steady as possible for a

few minutes, and by means of the plunger

adjust the height of the mercury in the barometer tube until it

is brought just into contact with the tip of the index finger.

Stir the water in the jacket, observe its temperature, readjust

the plunger if necessary, move the slider *S' until its index line

is tangent to the meniscus in the manometer tube, and read the

position of this index line. Determine to the nearest millime-

ter the height of the water column above the mercury. Di-

vide this height by 13.6, the specific gravity of mercury, and

add the result to the difference between the levels of the mer-

cury in the two tubes. Subtract this result from the barometric

pressure as given by the standard barometer. The result is the

vapor pressure of water at the temperature of the experiment.

Take similar readings every ten degrees up to about 95° C.

When through the experiment, draw off the water in the jacket,

Fig. 82.
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and adjust the mercury to about the same level in both arms.

Plot a curve with vapor pressures as ordinates and corre-

sponding temperatures as abscissas. On the same coordinate

axes plot another curve from the values given in Table 13.

This method is liable to several errors. The surface tension

of the dry mercury in the manometer tube is different from that

of the wet mercury in the barometer tube. This will cause a

rise of the column having the wet surface of 0.10 to 0.15 mm.
The fact that the lower part of the barometer tube is at a

lower temperature than the upper causes the final result to

be too low. This error will be of the order of 0.15 mm. If

the position of the end of the index finger is read through the

water jacket, the refraction of the glass and water will intro-

duce an uncertainty that may amount to 0.5 mm. This error

is obviated by carefully measuring the distance from the end of

the index to a fine scratch on the tube below the water jacket

before the apparatus is assembled. In order to use this scratch

as the fiducial line from which heights are measured, the posi-

tion of the line is read on the meter stick by means of a cathe-

tometer (see p. 23). The greatest limitation to the use of

this method, however, is due to the large error introduced in

the depression of the barometer column by an impurity of the

specimen.

Exp. 43. Determination of the Maximum Vapor Pressure of

a Liquid at Various Temperatures

(DYNAMIC METHOD)

Object and Theory of Experiment. — The object of

this experiment is to determine the maximum vapor pressure

of water at various temperatures from about 50° C. to about

120° C. The dynamic method to be employed in this experi-

ment is based upon the following two laws of vapors: first, a

liquid boils when the pressure of its vapor equals the external

pressure ; second, if the pressure does not change, the tempera-
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ture of the boiling liquid remains constant as long as there

is any liquid to vaporize.

In Regnault's apparatus (Fig. 83) the water is inclosed in

a boiler B, from the top of which runs a tube through the

condenser C to a large metal reservoir

inclosed in a water bath kept at con-

stant temperature. The reservoir is

filled with air the pressure of which is

varied by means of a pump connected

to P. The air in the reservoir serves

to equalize any sudden changes of pres-

sure due to irregularities in boiling. If

it were not for the condenser, most of

the steam formed in the boiler would

not be condensed, but instead would

increase the pressure in the boiler and

reservoir and thus prevent much boiling.

That is, when the burner was lighted

both temperature and pressure would

gradually rise. The pressure of the

vapor is measured by means of the open

manometer at the right. The tempera-

ture of the vapor in the boiler is ob-

tained from the four thermometers T,

placed in tubulures which project into

the boiler. Two of these tubulures are

long, projecting into the water, and two

are short, projecting into the vapor only. Fig. 83.

The bottoms of all of them are filled with mercury, so that the

bulbs of the thermometers quickly acquire the temperatures of

the water and vapor in the boiler.

Manipulation and Computation. — The boiler already

contains sufficient water. Start a stream of cold water flowing

through the condenser, and then light the burner under the

boUer. Pump air out of the reservoir until the pressure is

reduced to about 10 cm. of mercury, i.e. until the difference be-
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tween the heights of the mercury in the two arms of the manom-

eter is about 65 cm. Then close the stopcock in the tube con-

necting the pump and the reservoir. When the thermometers

have become steady, record the reading of each thermometer

and of each of the manometer tubes. Note also the temperature

of the manometer and the barometric height. The corrected

barometric height diminished by the corrected difference of level

between the manometer columns gives the pressure of the vapor

at the temperature indicated by the thermometers in the boiler.

Assuming that the manometer scale is correct at 20° C, reduce

the pressure to 0° C, i.e. so correct it as to make it the pres-

sure that would have been observed if barometer and manom-
eter had been at 0° C. This can be effected for the barometer

by (172) and for the manometer by (170).

Allow air to enter the reservoir until the difference in the

heights of the mercury columns is about 20 cm. less than before.

This increase of pressure requires that a higher temperature be

attained before the water will boil. When the temperature has

reached the new boiling point, a second set of observations is to

be made. In the same manner, the boiling points correspond-

ing to about eight different pressures are to be determined, the

difference in pressure in passing from each case to the next

being about 20 cm. of mercury.

Plot a curve with pressures as ordinates, and temperatures as

abscissas. On the same coordinate axes plot for the same range

another curve with values from Table 13. This curve, showing

the way in which the pressure of saturated water vapor changes

with temperature, is called the steam line.

Exp. 44. Determination of the Density of an Unsaturated

Vapor by Victor Meyer's Method.

Object and Theory op Experiment.— Probably the

most accurate method for determining the density of an unsat-

urated vapor is to allow a known mass of the liquid whose vapor

density is to be determined to vaporize in the Torricellian vacuum
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of a barometer, and then to observe the volume occupied by the

vapor. The ratio of the mass of the liquid vaporized to the

volume occupied by the vapor is the density of the vapor at the

temperature and pressure of the experiment. But if the result

need not be trusted more closely

than to within some three to

five per cent, a method due to

Victor Meyer will be found

much more convenient.

The apparatus used in this

method is shown in Fig. 84. It

comprises a gas measuring tube

^, and a vapor chamber con-

sisting of a long glass tube ter-

minating in a bulb5, surrounded

by a bath containing a liquid of

higher boiling point than the

substance under examination.

The specimen is contained in a

small bulb whicli can be sup-

ported in the upper cooler part

of the vapor chamber by means

of a rod H capable of a back

and forth motion in a side tube.

When the bath has attained

a constant temperature, high

enough to vaporize the speci-

men, the rod H is drawn back

so as to allow the little bulb

containing the specimen to fall

to the bottom of the chamber.

Here it either breaks by con-

cussion with the bottom, or

bursts due to the expansion of the contained liquid. When
the contained liquid vaporizes, it pushes out of the vapor

chamber a volume of air equal to its own volume, and the vol-

t\

-- -J

Fig. 84.
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uiiie of this expelled air is determined by means of the measur-

ing tube E.

In bubbling up through the water in the measuring tube the

air expelled from the vapor chamber becomes cooled and so con-

tracts. Since all gases have nearly the same coefficient of ex-

pansion, the vapor, if it could be cooled to the temperature of

the air in the measuring tube without becoming saturated,

would after this cooling occupy the same volume that the air

does. Therefore the density of the vapor at the temperature

and pressure of the air in the measuring tube equals the mass of

substance vaporized divided by the volume of air thereby forced

into the measuring tube. The temperature of the bath sur-

rounding the vapor chamber must remain constant during the

vaporization of the specimen, but its value need not be known.

Since the densities of gases and vapors vary greatly with

changes of pressure and temperature, it is customary to reduce

the values to what they would be at some standard pressure and

temperature. The pressure usually adopted as standard is the

pressure of 760 mm. of mercury, and the temperature adopted as

standard is 0° C.

Let m be the mass of substance vaporized, and v^ and Vq the

volumes of the vapor when at the respective pressures, tempera-

tures, and densities pt, p^, t, 0, pi, and p^. From the funda-

mental law of gases, (166),

p^v^ = RmT^ (199)

and ptVt =Bm<iTo+f). (200)

Dividing (199) by (200),

Po T,+t

wi m 760m (273 -1-0 roM\Whence p, = -= ^ =^^. (201)

Manipulation and Computation. — The substance to be

selected for the bath will depend upon the temperature of vapori-

zation of the specimen being examined. The following sub-
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stances will be found convenient to use : water, whose boiling

point is 100° C. ; analin, 182°.5 C. ; bromonaphthalin, 280° C.

The specimen is inclosed in a thin glass bulb (7, which must
first be weighed and may then be filled as is illustrated in the

figure. A hot metal rod held below Q will cause some of the

contained air to bubble out, and when the bulb cools it will be-

come partly filled with the specimen. By repeating this opera-

tion the bulb can be entirely filled. If the liquid is volatile, the

stem of the bulb must be sealed in a flame or plugged in some

manner. The mass of the specimen is determined by weighing.

The bulb is then supported in the cool part of the vapor cham-

ber by the rod i2. When the temperature of the bath becomes

constant, no more air bubbles up through the water in the

trough Y. When this state is attained, the measuring tube -E,

filled with water, is placed over the outlet of the discharge tube

and the rod R is withdrawn, allowing the bulb to fall and

break. The volume of air entering the measuring tube and its

temperature are observed. The barometic height is also noted.

The pressure of the moist air in the measuring tube is equal

to the barometric pressure diminished by the sum of the pres-

sures due to the column of water within E above the surface of

Fi and the pressure of aqueous vapor at the temperature E.

This latter may be taken from Table 13.



CHAPTER XIII

HYGROMETRY

Hygkometey or Psychrometry is the theory and art of meas-

uring the amount of moisture in the atmosphere. The mass of

water contained in unit volume of air is called the absolute

humidity. Absolute humidity, then, is simply another name for

the density of the vapor which is present. The ratio of the

mass of moisture contained in unit volume to the mass which

would saturate the same space at the same temperature is called

the hygrometric state or relative humidity of the atmosphere.

Let p be the pressure and v the volume of a mass m of

aqueous vapor at the absolute temperature T. Let m' be the

mass of vapor at the pressure p' necessary to saturate the same

volume at the same temperature. Then since for ordinary

atmospheric temperatures and up to the point of saturation

aqueous vapor obeys approximately the fundamental law of

gases, we have from (166)

pv '—_ RmT

,

and J»'^= Rml T.

That IS — '-^1 rOM\m' p' (202)

Consequently relative humidity equals the ratio of the actual

pressure of the aqueous vapor in the air to the maximum
pressure possible at the same temperature.

It thus appears that there are two general methods of deter-

mining the relative humidity of the atmosphere. The first

requires the measurement of the actual mass of aqueous vapor

contained in a given volume of air. This can be done by

drawing a given volume of the air through a drying tube and

202
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weighing the drying tube. Tlie mass of aqueous vapor required

to saturate the same space at the same temperature can be

obtained from tables. The more common method, however, is

to determine the actual pressure of the vapor in the air, and
then from tables find what the pressure would be if at the same

temperature the vapor were saturated.

Exp. 45. Determination of Relative Humidity with Daniell's

Dew Point Hygrometer

Object and Theory op Expbeiment. — The temperature

to which the atmosphere must be cooled in order that the water

vapor present may be saturated is called the dew point. The
object of this experiment is to determine the relative humidity

of the atmosphere from an observation of the dew point.

Consider a mixture of air and water vapor which has volume

v", mass m", pressure p", and absolute temperature T. Let

the water vapor in this mixture have mass m and exert pressure />.

Down to the temperature of saturation, both water vapor and

air obey approximately the fundamental law of gases. There-

fore, from (166),
p"v" = Bm"T (203)

and pv" = RmT. (204)

As long as p" does not change, (203) shows that -^ does not

change, and, therefore, from (204), p does not change. That

is, whatever change there may be in the temperature of a part

of the atmosphere, if the pressure of the atmosphere as a whole

is not altered, then the pressure of the water vapor in it is not

altered. Consequently, the pressure of the water vapor in any

portion of air can be determined by cooling the air down to the

dew point and looking up in the proper table the pressure of

saturated water vapor corresponding to this temperature. From

(202) and the definition of relative humidity it follows that

the relative humidity of any portion of air is given by

Sh^r (205)
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where p and p' represent respectively the pressures that satu-

rated water vapor would exert at the dew point and at the actual

temperature of the air.

Manipulation and Computation. — Daniell's hygrometer

consists of two glass bulbs connected by a bent tube as shown

in Fig. 85. The lower bulb contains ether and a thermometer.

The upper bulb is wrapped witli a piece of muslin.

In determining the dew point with this apparatus all of

the contained ether is passed into the lower bulb and then

the upper bulb is moistened with ether. The evaporation of the

ether poured on the upper bulb causes the

bulb to cool and a part of the vapor in the

apparatus to condense. This condensation in

the upper bulb decreases the pressure which

the ether vapor exerts on the surface of the

liquid ether in the lower bulb. Under the de-

creased pressure some of the ether in the

"lower bulb evaporates and so cools the lower

bulb. Thus the temperature of the lower

bulb gradually falls until dew is deposited on

its surface. The beginning of a dew deposit

is usually detected by watching to see if any

effect is produced on drawing a fine brush lightly across a

gilded surface on the bulb. The temperature of the lower bulb

is then read. After this the apparatus is allowed to remain

until equilibrium is restored and the temperature begins to

rise. The temperature at which the deposit of dew disappears

is noted. The mean of the temperatures when the deposit

appears and when it disappears is taken as the dew point.

The temperature of the surrounding air is noted by the

thermometer attached to the wooden stand supporting the

hygrometer.

From Table 13 find the pressure of saturated aqueous vapor

at the dew point and at the temperature of the room. Make

at least five determinations and take the average.

Fig. 85.
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Exp. 46. Determination of Relative Humidity with the Wet
and Dry Bulb Hygrometer

Object and Theory of Experiment.— If two exactly

similar thermometers, the bulb of one naked and the bulb of

the other covered with a wet wick, are placed near each other

in a current of air, the thermometer with the naked bulb will

indicate the temperature of the air while the other will indicate

a lower temperature. The difference between the indications

of the two thermometers is due to evaporation at the surface of

the wet bulb and depends upon the degree of saturation of the

air. The relation between the relative humidity of the air and

the indications of the thermometers has never been obtained in

an entirely satisfactory manner from purely theoretical con-

siderations. But by comparing the indications of this hygrom-

eter with the indications of hygrometers of other types, tables

have been constructed by means of which the relative humidity

of the air can readily be determined from a single pair of si-

multaneous readings of the wet and dry bulb, thermometers.

For several years simultaneous readings of the Daniell and

of the wet and dry bulb hygrometers were taken, and from a

comparison of these readings the numbers in Table 15 were

obtained. As an example, on placing these two instruments near

one another, tlie following simultaneous readings were made :
—

Temperature of the air, 21° C,
Temperature of the wet bulb, 19° C,
Dew point, 18° C.

In Table 13 the pressure of saturated aqueous vapor at 18° is

given as 15.33 mm. It follows that corresponding to an atmos-

pheric temperature of 21° and a wet bulb temperature 2° lower,

the pressure which the aqueous vapor in the atmosphere would

exert at the dew point— and, consequently, does exert at the

given temperature— is 15.33 mm. of mercury. In Table 15

this number in placed in the line numbered 21° C. and in the

column numbered 2°.
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Manipulation and Computation. — The wet and dry-

bulb hygrometer, sometimes called August's psychrometer, con-

sists of two similar thermometers, one with a naked bulb and

one with the bulb covered by an envelope of wet muslin. A
current of air is caused to blow over the two bulbs with a fan

or some other means. In one convenient arrangement for this

purpose (Fig. 86) the two thermometers are supported by a

frame that can be rotated by hand.

With the muslin envelope dry

take simultaneous readings of

both thermometers for several

minutes. Then see that the

muslin envelope about the bulb

„ „ of the wet thermometer is kept
Fig. 86.

, , , . n . , ,.

thoroughly moist, and with a fan

or the rotating device shown in the figure change rapidly the

air about the instrument. When the wet bulb has reached a

stationary temperature, read each thermometer again. From
the corrected difference in the readings of the two thermometers

find in Table 15 the pressure p of the aqueous vapor present

in the atmosphere. In the 0° difference column find the pressure

p which the aqueous vapor would exert if there were enough

of it present to be a saturated vapor. Calculate the relative

humidity by (205).

Make not fewer than five determinations and take the average.

Before each determination be certain that the muslin envelope

is thoroughly moist.

^



CHAPTER XIV

CALORIMETKY

Caloeimetry is the theory and art of measuring quantities

of heat. Unfortunately there is no single quantity of heat that

is universally adopted as the unit. A common unit in scientific

work is the amount of heat required to raise the temperature

of one gram of water from 15° C. to 16° C. This unit is called

the 15° calorie or simply the calorie or the gram-degree-centi-

grade thermal unit. In the British system the unit adopted is

the amount of heat required to raise the temperature of one

pound of water from 60° F. to 61° F. This is called the British

thermal unit or the pound-degree-jFahrenheit thermal unit.

Throughout this book the calorie will be used exclusively.

The number of thermal units required, to raise the tempera-

ture of unit mass of a substance from t° to (t + 1)° is called its

specific heat at t°. The specific heat of bodies is slightly differ-

ent at different temperatures, but the difference is so minute

that except in the most refined measurements it need not be

considered. The average specific heat of a body between any

two temperatures is the number of heat units required to raise

a unit mass of it from one of those temperatures to the other,

divided by the difference in the two" temperatures. That is,

the quantity of heat 5" required to raise from t^ to t^" the tem-

perature of m grams of a substance of average specific heat s is

n=mB(t^°-t{). (206)

Throughout the above paragraph it is assumed that between

the temperatures considered the body does not melt, solidify,

vaporize, nor condense.

When a body does melt, solidify, vaporize, or condense, with-

207



208 PRACTICAL PHYSICS

out changing at all in temperature, the amount of heat required

or giA'-en out is proportional to the mass of the substance that

changes state and depends upon what that substance is. That is,

H=mf, (207)

where / is a constant called the heat equivalent* of fusion,

solidification, vaporization, or condensation, as the case may be.

The mass of water which requires the same amount of heat

as a given body in order to change its temperature by the same

amount is called the water equivalent of the body. Thus, if

e represents the water equivalent of a bod}% and o the mean
specific heat of water between t^ and t^, the quantity of heat

required to raise from fj° to t^ the temperature either of the

body or of e grams of water is

JI=ec{t^°-ty°). (208)

Dividing (208) by (206),

^
e=— • (209)

Ordinarily, the specific heat of water may be taken as constant

and equal to unity. In this case

e = ms. (210)

That is, the water equivalent of a body equals the product of

its mass arid its specific heat.

In determining the water equivalent of a thermometer, only

that part of it which changes in temperature is to be consid-

* From the fact that the heatr absorbed by a body during fusion or vaporiza-

tion does not change the temperature of the body, it used to be supposed, when
heat was considered to be a fonm of matter, that the heat absorbed during fusion

and vaporization existed in the melted or vaporized body in a latent, i.e. a

hidden, form. This heat was then called the latent heat of fusion or vapori-

zation. Now that it is known that heat is a form of energy, viz. that form

which changes the temperature of bodies, we prefer to say that the heat absorbed

by a body during fusion or vaporization does not exist in the melted body as

heat but as some other form of energy. Consequently, the expression

latent heat is now obsolescent and is giving place to the term heat

equivalent.
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ered. This may be taken as somewhat more than the part

immersed. Fortunately, the product of the density of mercury

by its specific heat is nearly the same as the corresponding

product for glass. That is, the water equivalent of a given

volume of mercury is about the same as that of the same vol-

ume of glass. Since the value of this product is about 0.5 g.

per c.c, the water equivalent of a thermometer in grams may
be taken as somewhat more than half the volume of the im-

mersed part in cubic centimeters.

Although simple in theory, calorimetric experiments require

great care and many precautions. One of the most important

sources of error is radiation, i.e. there is a gain or loss of heat

because neighboring bodies are at temperatures different from

that of the body being studied. The principal methods of

diminishing this error are (a) to compute the amount of heat

actually gained or lost by radiation ; (S) to determine the

temperature which the body would have attained if there had

been no radiation; (c) to employ a method in which the tem-

perature is kept the same as that of the surroundings.

THE CORRECTION FOR RADIATION

1. Regnault's method is based on Newton's Law of Cooling.

This law may be stated as follows: The rate at which a body

cools is proportional to the difference between its temperature

and the temperature of its surroundings. If, then, A t denotes

the fall of temperature due to the radiation which occurs in the

short time A T, and if the temperatures of the body and its sur-

roundings are denoted respectively by tf, and t^, Newton's law of

cooling may also be stated by the equation

where k' is the proportionality factor. If both members of this

equation are multiplied by the water equivalent, e', of the cool-

ing body, then since e'At is, from (210) and (206), the heat, A ff,
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lost while the temperature falls At°, the equation becomes

Aff=rAT(:t,-Q, (211)

where r is written in place of the product e'k'. This r is a con-

stant which depends only on the nature and area of the radiating

surface, and is called the radiation constant of the body. New-
ton's law is now known to be only a rough approximation to the

true law of cooling; but it is simple, and, if the difference in

temperature between the body and the surroundings is not

greater than 15° or 20°, it holds fairly well.

Let CD and UF in Fig. 87 represent the respective changes

in temperature of the body and its surroundings while the body

cools by radiation. Since (^j— ^j) is at any instant the vertical

distance from UF to OD and Ay is the horizontal distance be-

tween two of these vertical lines which are near together, it fol-

lows that the product AT
Ob— ts} is represented

very nearly by the shaded

area A A. That is, from

(211),

AH = rJcAA,

where A; is a constant

which depends upon the

scales chosen in plotting.

If the temperature of the

body, instead of falling

the small amount Ai, falls

from *2 to
*i'

t^6 entire fall being due to radiation, the total

heat lost H^ involves the sum of the elementary areas A A, that

is, the area OF. If this area is denoted by Acf: we have

ff^rJcAcF. (212)

Now suppose that the body has heat given to it in such a

way that its rise of temperature can be represented by the

curve ABO in Fig. 88. The maximum temperature is reached

when the body ceases to receive heat from the source faster

Fig. 87.
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than it radiates heat to the cooler surroundings. After this

point is reached, the body falls in temperature in a manner
that can be represented by the line CD. While the body is be

low the temperature of its surroundings it absorbs heat from

them, and while it is above the temperature of its surroundings

it loses heat to them. The radiation correction, now to be found,

is the difference between the amount of heat lost by the body

through radiation and the amount gained by absorption while

the body was rising from its original to its maximum tempera-

ture.

r::::::
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If the radiation constant r were known, (213) could be used to

determine the radiation correction R. The purpose of allow-

ing the body to cool for a time by radiation after the other

heat changes have taken place is to make possible the determi-

nation of this r. From the part QB of the curve we have from

(212), if ^denotes the heat lost by radiation while the body falls

in temperature from *' to f",

S= rkA,

and from (206) and (210) we have also

5"= e' («'-«"),

where e' denotes the water equivalent of the body. It follows

that e' (t> - t") = rkA. (214)

On substituting in (213) the value of r from (214), we have

R = e'(t' -t"^- / . (215)

2. Instead of finding the number of heat units lost by the

body due to radiation while the temperature of the body is

rising to its maximum value, the effect of radiation can be

accounted for if the temperature is determined which the body

would have attained if there had been no radiation. In the

following modification of a method due to Rowland this tem-

perature can be obtained to a close approximation by a simple

graphical construction.

Suppose that a body at a temperature below that of its sur-

roundings is given a quantity of heat 5" such that its tempera-

ture rises to a value above that of the surroundings. While

the temperature of the body is lower than that of the surround-

ings the body absorbs heat, and while the temperature of the

body is above that of the surroundings, the body loses heat.

The way in which the temperature changes before the heat H
is added is represented by the line AB in Fig. 89. The line

BB shows how the temperature changes while the body is

absorbing the heat H. From B to C the body is, in addition,
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receiving heat from the surroundings, and from O to D is

losing heat to the surroundings. The line DU shows how the

temperature of the body changes due to radiation alone.

Through B and O
draw vertical lines.

Prolong JD^ backward

until it cuts the vertical

line through in /.

Through / draw a line fg
parallel to AB until it

cuts the vertical line

through B in g. The
temperature indicated by

ff
is the desired tempera-

ture.

To see that the above

method of finding the

desired temperature is reasonable, consider the following. If

the heat H had not been given to the body, it would have con-

tinued to rise in temperature iu the same way that.it was rising

from A to B, so that by the time it really attained the tempera-

ture indicated by it would have reached the temperature

indicated by h. That is, while the body really rose in tempera-

ture from B to O, the rise in temperature from B to h was due

to heat from the surroundings and the rise from h to was

due to a part of the heat H. Again, if the body had not been

given the heat IT, but if it had been at first at such a tempera-

ture that as it cooled it reached the temperature indicated by 2)

at the same instant that it really reached that temperature

— and thereafter cooled as shown by B^— it would have been

at a temperature / at the instant when it really was at the

temperature 0. That is, while the body really rose in tempera-

ture from to B, the fall in temperature due to radiation was

the fall from / to 2>, so that if there had been no loss of heat

by radiation, the rise of temperature during this time would

have been from to /. If, then, there had been no gain nor
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loss of heat by radiation, the body would have risen in tem-

perature the amount indicated by the distance from h to /.

But the temperature when it began to receive the heat H was

that indicated by B. So that the temperature which would

have been reached if there had been no radiation is a tempera-

ture as far above B as / is above h— that is, the temperature

indicated by g.

While the temperature of the body rose from C to _Z) it was

really at a lower temperature than if it had been cooling from

/ to B, and so did not really lose as much heat by radiation as

has above been supposed. That is, the point / is higher than

it ought to be. For a similar reason A is also somewhat higher

than it ought to be. If the time from ^ to C is about the

same as that from G to B, these two errors will nearly balance

each other.

3. Another method should be referred to, although it is con-

siderably less accurate than the two already discussed. In this

method, first suggested by Rumford, the initial and final tem-

peratures of the body are so arranged that the difference be-

tween the temperature of the surroundings and the initial

temperature of the body equals the difference between the tem-

perature of the surroundings and the final temperature of the

body. The idea is that, by this arrangement, the heat absorbed

from the room while the body is colder than the surroundings

equals the heat lost to the room wliile the temperature of the

body is higher than that of the surroundings. That this, how-

ever, may be only a rough approximation can be shown as

follows :
—

When a body is heated and then immersed in cold water, the

temperature of the water rises in a manner very like that repre-

sented by the curve RA in Fig. 90. During the first part of

the time, the temperature rises rapidly because the body is at

a temperature considerably higher than that of the water,

whereas when the temperatures become more nearly the same,

the temperature of the water rises more slowly. This means

that the first half of the temperature rise is accomplished in
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less time than the second. And this, in turn, if the tempera-

ture of tlie surroundings is halfway from the lowest to the

highest temperature of the water, means that less heat is gained

by absorption during the first half of the temperature rise than

is lost by radiation during the second half.

In fact, from (212) it follows that in

the case represented in Fig. 90 the ratio

of the heat lost by radiation to the heat 4o|

gained by absorption equals the ratio of

the areas FAQ- and HEF. The radiation

in would compensate the radiation out if

the temperature of the surroundings were

raised to BD, so that the areas CAD and

EBOv^ere equal. That is, in the given

case, the rise in temperature before reach-

ing the temperature of the surroundings should be about two

and a half times that after passing the temperature of the

surroundings.

20

10
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Consider a mass M of water filling a closed vessel, the water

equivalent of which is e and its external surface area A. If

during a short time AT the vessel and its contents cool Ai°,

their mean temperature during the time being t^, and the tem-

perature of the surrounding air being t,, then from the above

definition the emissivity of the surface is

LTA(t,-t,y
(216)

Similarly, if the vessel and its contents rise in temperature

A^°, due to absorption of heat from the surrounding air, the

absorbing power of the surface is

(M+ e) At

ATA(t,-t,y
(217)

Manipulation and Computation. — For this experiment

there are provided two or more metallic cylinders (Fig. 91),

exactly alike except for the nature of their external surfaces.

One cylinder, for example, may be highly polished, one may
have a tarnished surface, and one may be

coated with lampblack. In finding the emis-

sivities of these different surfaces, the cylin-

ders are in succession filled with warm water

and suspended inside of an inclosure formed

by two concentric cans J, IC, the space out-

side ^and inside >T being filled with water

at the temperature of the room. The temper-

atures of the water in the central vessel and

of the water in the jacket are observed every

two minutes for at least half an hour. The

water in the central vessel and in the jacket

is kept thoroughly stirred throughout the

whole experiment. From these observations

are plotted two curves coordinating temper-

one for the radiating body and one for the

Fig. 91.

ature and time

water jacket.
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Suppose that in a particular experiment the curve shown in

Fig. 92 was obtained and the following data found:—
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follows from (210) that the water equivalent of the radiating

vessel and stirrer is

e = 78.1 -0.093 = 7.3 g.

In computing the emissivity by means of (216), ?j, *,, and A^

may be taken from the curve. For a curve of this sort a con-

venient value for ^is five minutes. For example, to find the

emissivity of the surface of the radiating body when at 34° C,
while the inclosure was at 20°. 23 C, proceed as follows: To
the right and left of the point where the 34° line crosses the

cooling curve, lay off distances corresponding to 2.5 minutes.

At A and B, the ends of this line, erect perpendiculars until

they intersect the cooling curve, and at the points of intersec-

tion draw two lines parallel to the time axis. The distance be-

tween the last two lines represents the At° through which the

radiating body cooled during an interval of five minutes. In

this particular case Ai=l°.84. Substituting in (216) the

values thus obtained, we have

_ (126.3 -f 7.3)1.34 _ n QQQogQ
'"^ - 300x153.1(34.0-20.23) ~

^-^^O^^^-

In the same way are found the emissivities at other temperatures.

Proceeding as described above, with each of the surfaces being

studied, plot on a sheet of cross section paper an emissivity

curve for each surface.

Now fill with cold water the vessels heretofore used as radi-

ating bodies and by means of (217) knd an experimental method

similar to that used to find emissivity, determine the absorbing

powers of the different surfaces for various temperature differ-

ences between the absorbing surface and the inclosure.

State in words the conclusion reached from a comparison of

the emissivity and the absorbing power of the same surface.

At the beginning of the radiation experiment the tempera-

ture of the water in the radiating body should be about 15° C.

above that in the water jacket, and in the absorption experiment

the temperature of the water in the absorbing body may be

about 15° C. lower than that in the water jacket. But in no
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case should the temperature of the absorbing body be so low
that dew will be deposited on its surface.

Exp. 48. Determination of the Specific Heat of a Liquid

(METHOD OF COOLING)

Object and Theory of Expekiment.— Suppose that a

mass rrii of a liquid of a specific heat S; is contained in a vessel

which has a water equivalent e and a radiation constant r. If

the temperature of the liquid is somewhat above that of

the surroundings, and if the temperatures of both liquid and
surroundings are observed for some little time, and then the

temperatures are plotted against times, two curves like those

in Fig. 87 will be obtained. While the liquid and vessel fall

in temperature through a range of At°, the heat which they

lose is, from (206),

Hi=imi8i + e')Mi. (218)

Since this heat is lost by radiation, (212) shows that it is also

given by
Ei^rkAi, (219)

where r, k, and Ai have the same meanings as the r, h, and A^p
in (212). From (218) and (219) we have at once

(jniSi + e)Mi = rkAi. (220)

In the same way, if the liquid in question is replaced by warm
water, and if subscripts w mean that the symbols to which they

are appended refer to this water,

(m„ + e)Af„ = rJcA^. (221)

If the scales chosen in plotting are the same for both pairs of

curves, the k in (220) and (221) is the same ; and if the nature

of the surface of the containing vessel remains the same, the r

is the same. On dividing (220) by (221) and solving for Sj,

we get

^^
^ AiAt„(m^ + e)_ _£_ ^222)

A^AtiMi mi
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Fig. 93.

Manipulation and Computation. — The apparatus used

in this experiment consists of a closed metal radiating vessel

suspended in an inclosure surrounded by an ice jacket. The
radiating vessel is provided with a stirrer

for agitating its contents and a thermometer
for reading temperatures.

Weigh the radiating vessel and stirrer

and, by multiplying their mass by the spe-

cific heat* of the material of which they

are composed, determine their water equiv-

alent. Fill the radiating vessel just to the

bottom of the neck with the liquid whose
specific heat is to be determined and set it

in water in a saucepan over a burner until

its temperature is about 40° C. Then wipe

the outside of the radiating vessel dry, sus-

pend it in the inclosure inside the ice jac-

ket, and while continually stirring, observe

the temperature every minute for quarter of an hour or longer.

Throughout this time keep the jacket full of ice. Then remove

the radiating vessel from the jacket and weigh it, thus finding

the mass of the liquid.

Clean the vessel, rinse it out with water, and fill to the

bottom of the neck with water. Then heat, dry, and suspend

in the ice jacket as before, and again observe the temperature

every minute for a quarter of an hour. Remove from the jacket

and weigh, thus finding the mass of the water.

Plot the cooling curves for both substances on the same sheet.

Since the jacket is packed with shaved ice, the temperature of

the surroundings in each case is zero. If, then, times are

plotted as abscissas, A„ is the area bounded on the top by the

water curve, on the bottom by the temperature axis, and on the

sides by any two convenient ordinates,— one near the beginning

and one near the end of the time employed,— and Ai is the

* If the radiating vessel or stirrer is of unknown composition, the water

equivalent can be obtained experimentally by the method of mixtures, p. 224.
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same area except that its upper boundary is the other curve.

These areas, may be obtained with a planimeter, determined by
counting the millimeter squares, or, perhaps most easily, found

by the method of average ordinates. At^ is the difference

between the temperatures at the points where the water curve

crosses the ordinates which bound the area A^, and Atf is the

corresponding difference for the other curve.

All of the data are now at hand for calculating the specific

heat of the specimen by means of (222). Two or three cooling

curves for each substance should be taken, and two or three

values for the specific heat thus obtained.

Exp. 49. Determination of the Specific Heat of a Solid

(METHOD OF MIXTUEES)

Object and Theory of Experiment. — The Metliod of

Mixtures depends upon the principle that when a number of

bodies of different temperatures are brought together, the

amount of heat lost by the bodies that fall in temperature

equals the amount of heat gained by the bodies that rise in

temperature.

Consider a body of mass m, specific heat s, and temperature t,

to be placed in a mass wi, of liquid of specific heat S; and tem-

perature ti contained in a vessel of mass m„ made of a material

whose specific heat is s^. Let the final temperature of the mix-

ture be ty. Then, if t is higher" than ti, the heat lost by the

given body equals the sum of the heat gained by the vessel and

its contents and that gained by the surrounding air. That is,

from (206), if It denotes the radiation correction,

msQt-t;)= {mtSi+m^s^Xtf- td+R- (223)

The correction for radiation may be applied either by Regnault's

method of calculating R, or graphically by the modification of

Rowland's method given on pp. 212-214. When the specimen

is in small pieces the rise of temperature is rapid and Rowland's

method is perhaps to be preferred.
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If water is the liquid used, s,= l. For purposes of ab-

breviation the water equivalent of the vessel, 711^8^1 will be

denoted by the single letter e. Then if tj denotes the tempera-

ture that the mixture would have reached if there had been no

gain nor loss by radiation, (223) gives

s=
(m,+ e}Ct;-t,-)

(224)

It should be noted that e represents the water equivalent of

the vessel in which the mixing occurs, together with any ac-

cessories it may contain, such as a stirrer or thermometer.

Manipulation and Computation.— The special apparatus

used in this experiment consists of a calorimeter and a heater.

Fig. 94.
Fig. 95.

A calorimeter is any apparatus used to measure quantities of

heat. The ordinary "water calorimeter" used in this experi-

ment (Fig. 94) consists of a thin polished copper vessel held

centrally within a jacket by means of non-conducting supports.

The inner vessel contains a thermometer T' and stirrer S, while

a second thermometer T is suspended in the air space between

the two concentric vessels. A convenient form of heater, shown

in Fig. 95, consists of a closed copper can in which water can be

boiled. Extending through one side and projecting nearly

through the boiler at an angle of 45° with the bottom, is a tube

sealed at the lower end and having the upper end closed with a

cork through which extends a thermometer. The specimen to
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be heated is placed in this tube, and when the temperature

indicated by the thermometer T has become steady, the specimen

is dropped into the calorimeter. If the specimen is in small

pieces, e.g. lead shot, it can be poured into the calorimeter by
simply tilting the heater, if the specimen is in a single piece, it

is drawn out of the heater with a thread and quickly lowered

into the calorimeter.

A very compact form of apparatus designed by Regnault is

shown in Fig. 96. In this apparatus the calorimeter is on a

little carriage that can easily be moved up to the heater and with-

drawn. Tlie tube BE extends entirely through the heater.

At its lower end is a shutter

A by means of which the ^^"=-^^'""^

tube can quickly be opened

or closed. A thermom-

eter extending through the

stopper at B permits the

observation of the tem-

perature of the specimen.

The specimen is held in

the middle of the tube

by a string extending out

through B. If the speci-

men is in small pieces it is contained in a small wire basket.

When it is desired to drop the specimen into the calorimeter,

the latter is moved under jE^, the shutter A is opened, and the

string holding the specimen is released so as to allow the speci-

men to fall quickly into the calorimeter.

The water equivalent of the inner vessel of the calorimeter

should first be determined. If the mass and specific heat be

known for each part of the calorimeter that changes in tempera-

ture, the water equivalent is most easily and most accurately

obtained by taking the sum of the products of these masses

and the corresponding specific heats. When this method can-

not be applied, the method of mixtures can be employed. In

this case, after weighing the inner vessel and stirrer, half fill

Fig. 96.
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the inner vessel with water at a temperature some 10° or 15°

below that of the room, and weigh again to determine the mass

m^ of cold water. With one thermometer in the water in the

calorimeter and another in water at a temperature some 15° or

20° above the temperature of the room, watch both thermome-

ters for a few moments, and immediately after reading both t„

and t/^, the temperatures respectively of the cold water and of

the hot water, pour rapidly into the inner vessel enough of the

hot water nearly to fill it. Meantime stir briskly and watch

the thermometer in the calorimeter. After noting the tempera-

ture of the mixture t^, weigh again to determine the mass ?«/,

of hot water added. Since the heat lost by the hot water

equals that gained by the calorimeter and contents plus that

lost to the surroundings,

^kik -U = (m, + e) (t^ - t,) + R', (225)

where e represents the water equivalent of the calorimeter

and M' the radiation correction. From the discussion on pp.

214-215, it follows that M' can be made very small by selecting

proper values for the temperatures. Since e is usually small

compared with wi,, and since in the only place where e is used

in (224) it is added to to,, a smaU error introduced into e by

failure entirely to eliminate H' would cause in s a very small

error. If this very small error is neglected, (225) gives

e = "^a(^;. - ^m) _ ^^_ (226)
^m ''c

The satisfactory determination of a water equivalent by this

method requires deft and rapid manipulation and careful deter-

mination of temperature.

Be sure that the specimen is dry, and place it in the tube in

the heater until its temperature assumes a constant value t.

While the specimen is heating weigh the inner vessel of the

calorimeter, if this has not already been done. Then pour into

this inner vessel water at a temperature three or four degrees

below that of the room until the vessel is somewhat more than
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half full and determine the mass of the water. Assemble the

parts of the calorimeter, placing one thermometer in the water

contained in the inner vessel and another thermometer against

the inner surface of the jacket. The thermometer in the water

should have its bulb entirely covered by the water, but should

not be low enough to be touched by the specimen. The tem-

perature of the water should now be observed at quarter or

half minute intervals, and the temperature of the jacket every

minute or two. For each reading the hour, minute, and second

at which the reading is made should be recorded. The readings

are taken continuously but belong to three successive periods.

Before beginning the first period be sure that the thermometer

in the heater is steady in the neighborhood of 100° and record

its reading.

First period. While stirring the water read times and corre-

sponding temperatures for some three to five minutes before

transferring the specimen to the calorimeter.

Second period. At a given instant transfer the specimen rap-

idly to the calorimeter. Continue to stir the water and to take

temperature readings every quarter or half minute. While the

heated specimen is giving up its heat, the water rises rapidly to'

a maximum temperature ty. This period is frequently over

in fifteen or twenty seconds. The maximum temperature is

attained when the rate at which heat is radiated by the water

to the air equals the rate at which the water receives heat from

the specimen. The temperature may remain stationary at this

value for an appreciable length of time. Thereafter, if the

water has risen to a temperature above that of the jacket, the

loss by radiation exceeds the gain of heat from the specimen.

If the water does not rise above the temperature of the jacket

inside of a minute after the specimen is dropped into the calo-

rimeter, the specimen is to be dried and the experiment begun

again,. If the temperature rises rapidly and then almost at once

falls again somewhat, the specimen has come too close to the

thermometer and the experiment should be begun again.

Third period. Without interruption continue to stir the
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water and to take readings of temperature and time for at least

five minutes during the cooling of the water in the calorimeter.

After the third period weigh the inner vessel and contents,

and so determine the mass of the specimen.

With these readings, plot on the same sheet two curves—one

coordinating temperature and time for the water in the calo-

rimeter, and another coordinating temperature and time for the

surroundings. A pair of such curves is shown in Fig. 89.

From these curves the temperature which would have been

reached if there had been no radiation can be determined by

Rowland's method. The data are now at hand which when
substituted in (224) give a value for the specific heat of the

specimen.

One or two preliminary experiments may be necessary in

order to determine just how much water to use and at what

initial temperature to have it. After a satisfactory set of read-

ings is obtained, another set should be taken and two values

found for the specific heat.

Exp. 50. Determination of the Specific Heat of a Solid

(METHOD OF STATIONARY TEMPERATURE)

Object and Theory of Experiment. — The object of

this experiment is to determine the specific heat of a solid by a

modified form of the Method of Mixtures in which the water

equivalent of the calorimeter is avoided and the radiation cor-

rection is eliminated. This is accomplished by maintaining

the temperature of the calorimeter throughout the experiment

the same as that of the surroundings.

Consider a body of mass m, specific heat s, and temperature t,

dropped into a calorimeter containing TOj grams of water at the

temperature of the surroundings ^j. Let cold water be added

to the calorimeter at such a rate that the temperature of the

calorimeter remains constant. If the mass and temperature of

this cold water be represented by m^ and t^ respectively, then

the heat emitted by the specimen is, by (206), ms(t— tj), and the
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heat gained by the cold water added to the calorimeter equals

^cCh ~ O- Since the water originally in the calorimeter has

not changed in temperature, the heat lost by the specimen

equals that gained by the cold water. That is,

Whence

ms (t

—

ij) = m^(t^— *,.)

.

m(t— t^
(227)

Manipulation and Computation. — The apparatus used

in this experiment includes a calorimeter of special design

Fig. 97.
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air thermometer into which projects a copper tube X for the

reception of the water and specimen. Any change in the tem-

perature of the calorimeter is indicated by an open manometer

tube M. To prevent any effect due to changes in the tempera-

ture of the surrounding air, the calorimeter is placed in a

water bath yat the temperature of the room.

After the apparatus has been assembled ready for use, the

specimen is weighed and placed in the heater. The mixing

tube of the calorimeter is unscrewed and weighed, first

when empty, and then when filled with enough water at

the temperature of the room to cover the specimen. The
mixing tube is now replaced and the stopcock attached to

the manometer is opened for an instant. By this means

any difference of pressure between the inside of the air ther-

mometer bulb and the outside air is equalized. When the

thermometer in the heater indicates a steady temperature near

100°, the water dropper is made ready for use by allowing cold

water to escape until the thermometer in the

escaping steam indicates a stationary tempera-

ture. The temperatures of the specimen in

the heater, the water in the mixing tube of the

calorimeter, and the cold water in the water

dropper are now noted. The heater is rotated

into position over the calorimeter and the

specimen quickly lowered into the mixing

tube. The heater is immediately rotated out

of position and the water dropper rotated into place. By
operating the valve V, cold water is now allowed to fall into

the mixing tube at such a rate that the index in the manometer

tube of the air thermometer remains stationary. The proper

rate can be ascertained only by previous trials ; it depends

largely upon the conductivity and fineness of division of the

specimen. When no more cold water is needed, the mixing

tube with its contents is again weighed. All of the data

necessary for the computation of the specific heat of the speci-

men by means of (227) are now at hand.

Fig. 99.
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Exp. 51. Determination of the Specific Heat of a Solid

(JOLY'S METHOD)

Object and Thboey of Experiment.— A cold body placed

in an atmosphere of steam absorbs heat until its temperature
is the same as that of the steam. A certain amount of steam
is thereby condensed. If the steam is at the boiling point of

water, the amount of heat lost equals the product of the mass
condensed and the heat equivalent of condensation of steam.

By "heat equivalent of condensation" of steam is meant the

number of heat units given up
by the condensation of unit

mass of steam. This is nu-

merically equal to the "heat

equivalent of vaporization" of

v^ater, i.e. the number of heat

units required to vaporize unit

mass of water. The object of

this experiment is to determine

the specific heat of a solid

from a measurement of the

mass of steam condensed on

the body as it rises in tempera-

ture to the boiling point of

water.

Joly's apparatus (Fig. 100)

consists of a steam chamber

inclosing one pan of a delicate balance. The pan is suspended

from the balance beam by a fine wire passing through a small

hole in the top of the steam chamber. Steam is first passed

into the steam chamber and the mass of steam which condenses

on the scale pan is weighed. The apparatus is now allowed to

cool to the temperature of the room. The scale pan is dried

and upon it is placed the specimen whose specific heat is required.

Steam is again passed into the steam chamber and the mass of

^"""l"—I
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steam which condenses on the specimen and on the scale pan

is weighed.

Let s denote the specific heat of the specimen ; e, the water

equivalent of the scale pan and suspending wire ; ^^ and t^, the

respective temperatures of the room and of the steam ; h, the

heat equivalent of condensation of steam ; and mj, m^, m^, and

m^, the respective masses required to balance (1) the empty

scale pan, (2) the pan with the steam which condenses on it,

(3) the pan and the specimen, and (4) the pan and specimen

with the steam which condenses on them both:

The amount of heat absorbed by the scale pan and suspending

wire as they rise in temperature from ^j to t^ is e(^t^ — t^).

This heat is supplied by the heat liberated in the condensation

of the mass (m^ — w^x ) °^ steam. Therefore,

e(t^-t.^) = (m^-m-^;)h. (228)

Similarly, the amount of heat absorbed by the specimen, the

mass of which is (m^ — jw^), together with the balance pan and

suspending wire is (m^ — m^')s(t^ — t^')+e(t^—t-^). This heat

is due to the condensation of the mass of steam (m^~m^).
Consequently

(wzg — m{)s(t^ — t{)+ e(t^ — ^j) = (m^ — m^')h. (229)

Subtracting (228) from (229),

(Wg — mj )s(<2 ~^i) = (^4 — JWg — W2 + m-^h.

Whence ^^
(.m,-m,-m^ + m,-)h

^ 230)

It will be noticed that (m^ — m^ — m^ + m-^) is the mass of

steam condensed on the specimen, and that (m^ — wij) is the

mass of the specimen.

Manipulation and Computation. — A common source of

error in this method is an uncertainty in weighing produced

by steam condensing on the suspending wire where it emerges

from the steam chamber. In tlie apparatus illustrated in the
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figure, this trouble is diminished by having the suspending wire

pass through a small tube surrounded by
a steam jacket (Fig. 101). By passing

the steam through this jacket before it

enters the steam chamber, the neighbor-

hood of the aperture is sufficiently heated

to prevent a large amount of condensation

on the suspending wire outside of the yiq. loi.

chamber.

Take care to have the suspending wire hang free. Then
with standard masses m^ balance the lower scale pan. When
water in a detached boiler is boiling vigorously, note the tem-

perature ^j of the inside of the steam chamber and then connect

the boiler to the steam chamber with a good-sized rubber tube.

Steam will immediately be condensed on the object pan. After

one or two minutes diminish the flow of steam to such an

extent that the current will not disturb the object pan. With
standard masses m^ again bring the balance into equilibrium.

Disconnect the boiler from the steam chamber and allow the

chamber to cool to the temperature of the room ty Dry the

object pan, place upon it the specimen whose specific heat is

required, and determine the mass m^ now required to bring the

balance into equilibrium. Again connect the boiler to the

steam chamber, and after four or five minutes, when the speci-

men and object pan have acquired the temperature t^ of the

steam, diminish the flow of steam and with standard masses

m^ again bring the balance into equilibrium. Since h, the heat

equivalent of vaporization of water, is known, all of the data

are now at hand for computing the specific heat of the specimen

by means of (230).

Exp. 52. Determination of the Heat Equivalent of Fusion

of Ice.

Object and Theory oe Experiment.—The Heat Equiva-

lent of Fusion of a substance is the number of heat units re-

quired to melt unit mass of it without changing its temperature.
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Suppose that when OTj grams of ice at 0° C. are dropped into

m^ grams of water at tj', the ice melts and the temperature of

the mixture of the two becomes t^°. During this operation, the

ice has absorbed the heat required to melt it and also after

melting to raise its temperature from 0° to t^", while the calo-

rimeter and its contents have lost heat. If there were no gain

of heat from the surroundings nor loss to them, the heat gained

by the ice in melting and then rising to the temperature t^ would
equal the heat lost by the calorimeter and contained water.

That is, if e denotes the water equivalent of the calorimeter,

and / the number of heat units required to melt unit mass of

ice, we should have, from (206) and (207),

That is, the heat equivalent of fusion would be

(m^+ e)(^„-i{^)
-h- (231)

In most cases, however, the error due to radiation is too great

to be neglected. This error may either be computed by Re-

gnault's method or determined graphically by the modification

of Rowland's method given on pp. 212-214. If the latter

method be selected, it is necessary to determine the tempera-

ture that the mixture would have attained if there had been no

radiation nor absorption. Denoting this corrected value by t^,

we obtain the corrected equation

^^(m^+ e)(^^-V)_^^,^
(232)

The simple theory given in this experiment applies only to

a solid whose temperature is at its melting point at the moment
it is introduced into the calorimeter. In the general case not

only will the temperature of the specimen be below its melting

point at the moment of its introduction to the hot water of the

calorimeter, but in addition its specific heat will be different

in the solid and the liquid states. Even though neither of

these specific heats is known, by means of three experiments.
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similar to the above, in which the masses of the specimen and
the water, as well as the original temperature of the water, are

different, the heat equivalent of fusion of a substance can be

found. We have thus three simultaneous equations containing

but three unknown qantities, viz. the required heat equivalent

of fusion and the specific heats of the specimen in the solid and
in the liquid states. By eliminating the specific heats, the

heat equivalent of fusion can be determined.

Manipulation and Computation. — Weigh the inner

vessel of the calorimeter and the stirrer. The product of their

mass and the specific heat of the material of which the vessel and
stirrer is composed gives the water equivalent e. Fill their

vessel somewhat over half full of water at about 60° C, weigh,

and then assemble the calorimeter.

Cut a piece of ice having a mass somewhat over a fourth

that in the calorimeter. Keeping the water in the calorimeter

well stirred, read the temperature of the water about every

half minute and of the surroundings every minute or two.

Record the hour, minute, and second at which each reading

is made. At a given instant, after reading temperatures for

four or five minutes, drop the carefully dried ice into the

calorimeter and continue reading temperatures and stirring

for seven or eight minutes longer. The ice must be kept

submerged, and under no circumstances must the temperature

of the inner vessel fall so low that dew forms on it. Now
weigh the inner vessel with its contents. The data for deter-

mining m„ and m^ are now at hand.

The corrected temperature of the mixture can be determined

graphically, as follows. On a single pair of coordinate axes

plot two curves — one coordinating temperature and time

for the water in the calorimeter, and the other for the air

between the two vessels. Such a pair of curves is shown in

Fig. 102. Through the point of intersection of the two curves

draw a line parallel to the temperature axis. Produce the

cooling curve AB until it intersects this line PS at some

point X. Prolong DE backward until it intersects the line
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PS at some point H. Then in the manner given on p. 213

it may be shown that the point corresponding to the tempera-

ture t^' is as far above ^ as w is above x. That is, to find t^'

add to the temperature indicated by M the temperature differ-

ence represented by wx. It may be necessary to make one or
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Exp. 53. Determination of the Heat Equivalent of Vaporization

of Water

Object and Theory op Experiment.— If heat be applied

to aliquid, the liquid rises in temperature untilits maximum vapor

pressure becomes a trifle greater than the external pressure on

its surface. The vapor pressure is then great enough to make
the bubbles in the liquid expand in spite of the pressure of the

liquid outside of them. As the bubbles grow they rise to the

surface and burst and the liquid is said to boil. Further addi-

tion of heat does not raise the temperature, but simply makes

the evaporation into these bubbles go on faster, i.e. produces

more rapid boiling. The number of heat units required to

vaporize unit mass of a liquid is called the heat equivalent of

vaporization of the liquid. The object of this experiment is to

determine the heat equivalent of vaporization of water.

Let Wj grams of steam be condensed in m^ grams of water

contained in a calorimeter of water equivalent e. Let 4 denote

the temperature of the steam ; t„, the temperature of the calorim-

eter and contents at the moment the steam began to enter; t^,

the temperature of the two after they are mixed; and i;, the heat

equivalent of vaporization of water. Then the heat giveii up

by the steam in condensing and then cooling to the temperature

t^ equals the heat taken up by the calorimeter and contents plus

the heat lost by radiation. That is, from (206) and (207),

m,v -\- m, (t, - fg) = (m„ -f e)(t^ - t„) + E,

where It is the radiation correction.

Whence,
^^(m„+ e) (t, -t„) +B_

.^^ _ ^.
^233)

Manipulation and Compcttation. — The apparatus used

in this experiment comprises a boiler in which the liquid is

vaporized and a calorimeter containing a copper worm in which

the vapor is condensed. The liquid in the.boiler A (Fig. 103)
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Fig. 103.

is heated by means of an electric current passing through a coil

of wire. The arm holding the boiler is attached to a vertical

rod supported by the tubular column B. Below

the clamp D there is a horizontal slit extending

through an arc of about 90°, and from one end

of this horizontal slit there is a vertical slit ex-

tending about halfwaydown the tubular column.

A pin in the vertical rod supporting the boiler

extends through this slit. By means of this

arrangement, the boiler can be rotated quickly

into a definite plane and dropped in a vertical

line so as to cause the outlet of the boiler to

register with the end W of the copper worm
contained in the calorimeter C.

Weigh separately the condensing worm and

the inner vessel of the calorimeter with the

stirrer, and determine their total water equiva-

lent e. Pour water into the inner vessel of the

calorimeter until all the convolutions of the condensing worm
are covered. The temperature of this water should be below

that of the room, but not so low as to cause dew to be deposited

on the calorimeter. Determine the mass m„ of this water.

Assemble the apparatus and adjust the position of the calorim-

eter until the outlet of the boiler will register accurately with

the opening in the rubber stopper on the end of the condensing

worm. Raise the boiler, thus disconnecting it from the calorim-

eter, rotate it to one side, and pour into it enough distilled

water to cover all the turns of the wire. Connect a 110-volt

circuit to the terminals of the wire spiral and adjust the rheo-

stat until the water boils rapidly but does not spatter over into

the outlet tube.

Now commence stirring the water in the calorimeiter, every

half minute recording its temperature, and every minute or

two recording the temperature of the air in the jacket. Record

the hour, minute, and second at which each reading is made.

After reading for two or three minutes rotate the boiler into



CALORIMETRY 237

position, drop it into place, and, without interrupting the stir-

ring and reading of temperatures, allow steam to flow into the

condensing worm until the temperature of the water in the

calorimeter rises to 45° or 50°. Disconnect the boiler from

the calorimeter, rotate it to one side, throw off the current, and

continue stirring and taking temperature readings at one min-

ute intervals for about ten minutes. Remove the condensing

worm from the calorimeter, carefully dry the outside, and weigh.

The difference between this mass and the mass of the worm,
already determined, is the mass m, of the condensed steam.

Read the barometer, correct it as indicated on pp. 176-178, and

by Table 12 find the temperature of the steam.

Compute the value of the radiation correction R by Regnault's

method in the manner given on pp. 209-212. In determining

this correction notice that the e' in (215) is the water equivalent

of everything that cooled along the curve CD (Fig. 88). In

the present case e' is the water equivalent of the inner vessel

of calorimeter, contained water, stirrer, thermometer, worm, and

condensed steam.

Exp. 54. Determination of the Heat Value of a Solid with

the Combustion Bomb Calorimeter

Object and Theory op Experiment. — The object of

this experiment is to determine the amount of heat developed

by the complete combustion of a unit mass of coal. The heat

value of a solid or liquid is expressed either in British thermal

units per pound or in calories per gram.

The method to be employed in this experiment is to burn

a known mass of the given substance in a strong steel bomb

filled with oxygen under high pressure. During the combus-

tion the bomb remains immersed in a water calorimeter and

the heat developed is obtained by the ordinarj^ method of mix-

tures. Thus 'suppose that by the combustion of m grams of

the substance, the bomb together with the calorimeter, its acces-

sories, and the contained water rise in temperature from t° to
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t^ C. If the mass of water in the calorimeter is m„ grams, the

total water equivalent of calorimeter, bomb, thermometer, and

stirrer is e grams, and the radiatioii correction is B, calories,

then the heat value of the substance is

E-
(m, +e)(*2-«i)+-K

calories per gram. (234)

The superiority of this method is that since in it complete

combustion is attained and all the products of the combustion

remain in the apparatus, the quantity of heat developed is

readily computed.

Manipulation and Computation.— The apparatus used

in this experiment consists of a water calorimeter, a combustion

bomb, a press for molding the specimen into a small coherent

pellet, and a retort for generating

oxygen.

Hempel's combustion bomb consists

of a soft steel or cast-iron capsule

D (Fig. 104), closed by a massive

plug Q. The inside surface of the

bomb is coated with enamel. The
plug is pierced by two passages—
one JH for filling the bomb with

oxygen, and the other for the in-

troduction of an insulated conductor

KF. The gas passage is controlled

by the compression valve A. The rod

KF is insulated from the metal plug

by the rubber packing ilf and asbes-

tos packing N. (r is a metal rod

screwed into the plug. A little basket

E^ made of incombustible material,

is suspended by means of heavy plati-

num wires from the ends of the rods

6r and F. The ends of the rods Gr and F are connected by a

thin platinum wire.
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the wire connecting Gr and F. Without disturbing the speci-

men, remove the plug from its support and screw it tightly

into the bomb. The bomb is now ready to be filled with

oxygen. Into the gas generating retort i2 (Fig. 107) put a

mixture of about two hundred grams of potassium chlorate and

some fifty grams of manganese dioxid. Put a tightly wound
roll of copper or brass wire gauze into the tube leading from

the retort, and connect the retort and a pressure gage Gr to the

combustion bomb in the manner shown in the figure. Before

beginning to heat, shake the retort so as to spread the mixed

potassium chlorate and manganese dioxid along its whole

Fig. 107.

length. The pressure gage and combustion bomb are immersed

in a vessel of water for the purpose of detecting any leak in the

bomb and also for the purpose of cooling the oxygen coming

from the hot retort.

Open the gas valve in the combustion bomb and apply a

Bunsen flame near the farther end of the gas generating retort

until the gage indicates a pressure of about 1 Kg. per sq. cm,

(14 lb. per sq. in.). If the flame be now removed, the heat

already given to the retort will generate enough oxygen to

raise the pressure to about 5 Kg. per sq. cm. (70 lb. per sq. in.).

Now loosen the flange coupling P so as to allow the mixture

of oxygen and air contained in the apparatus to escape. By
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tightening the coupling P and repeating this operation the

entire apparatus can be freed of air. Now tighten the couplings

and slowly heat the retort until the gas pressure rises to about

12 Kg. per sq. cm. (170 lb. per sq. in.). Close the gas valve

on the combustion bomb and immediately afterwards discon-

nect the bomb at the coupling H from the remainder of the

.

apparatus. Cool the bomb to about the temperature of the

room and carefully dry it with a towel.

Place the bomb in a water calorimeter Q (Fig. 107) containing

iw„ grams of water at about the room temperature. Connect

the terminals of the previously arranged electric circuit to the

binding posts K and L, and see to it that K and L are not

short-circuited by the cover of the calorimeter. Before closing

the switch in the electric circuit take temperature readings of

the continuously stirred water at half minute intervals for at

least five minutes. At a given instant close the switch so that

the electric current will ignite the specimen. The switch should

be closed for a moment only or the heating effect of the current

will need to be taken into account. Continue stirring the water

and taking half minute temperature readings for at least ten

minutes after ignition. Take the bomb out of the water, open

the valve, unscrew the head, wash out the inside, and oil the

screw threads.

From a curve coordinating temperature and time find by

the graphical method described on pp. 212-214 the highest tem-

perature that would have been attained by the calorimeter if

there had been no loss of heat by radiation. Let t^ represent

this corrected temperature. Then instead of (234) we can write

^^ (ma + e)(%-t{)
gg^iories per gram. (235)

m

in this equation the water equivalent e is still unknown.

This can be determined in any of three ways : (a) By taking

the sum of the products of the masses and the assumed specific

heats of the various parts of the apparatus. In an apparatus

like this, composed of so many different materials of uncertain
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composition, this method is unreliable. (6) Experimentally,

by the method of mixtures. The large amount of water re-

quired in this experiment and the difficulty of obtaining

temperatures accurately make this method unsatisfactory for

inexperienced observers, (c) By means of a supplementary

experiment in which a definite amount of heat is developed in

the apparatus by the combustion of a known mass of a sub-

stance having a known heat value. There are a number of

substances the heat values of which are accurately known and
which can easily be obtained pure. The last method is the

one that will be employed, in this experiment.

Suppose that when using the same apparatus as before, the

burning of m! grams of a substance of heat value H' raises the

temperature of the apparatus and of m'^ gfams of water from

ij° to t'^G. Let ^g be the temperature that the calorimeter

would have attained if there had been no loss of heat by radia-

tion. Then

jj, _ CW+e)(V-^/) calories per gram. (236)

Whence, on solving for e,

(237)
t ' — f

'

(,3 tj

Naphthalin is a suitable substance to use in this supplemen-

tary experiment. Make a pellet of somewhat smaller mass
than that of the coal already used and proceed exactly as in

the experiment with the coal. Use (237) to find e, and then

(235) to find H.

Before putting away the apparatus dig the remaining solid

substance out of the gas retort, rinse out the combustion bomb
with water, and carefully oil the threads of the bomb and all

parts of the press. Be certain that no water or oil is left inside

of either the retort or the bomb. If oil or any other organic

substance is heated in the retort with the oxygen producing
mixture an explosion is liable to occur.
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Exp, 56. Determination of the Heat Value of a Gas with

Junker's Calorimeter

Object and Theory oe Experiment. — The object of

this experiment is to determine tlie number of heat units devel-

oped by the combustion of unit volume of a given sample of

gas. In Junker's method the heat developed by a steady flame

is determined by measuring the heat absorbed by a steady

stream of water inclosing the flame.

Fig. 108.

The apparatus consists of an accurate gas meter if (Fig. 108),

a gas pressure regulator R, and a calorimeter (7, of special
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design. The calorimeter consists of a combustion chamber A
(Fig. 109), inclosed by a water jacket B, traversed by a large

number of tubes for the pas-

sage of the products of com-

bustion. The water jacket is

surrounded by a closed space

L filled with air. After trav-

ersing the meter and pressure

regulator the gas is burned in

the burner Q. The products

of combustion after passing

through the tubes traversing

the water jacket escape

through the vent Y. The
temperature of the gas as it

enters the burner and the tem-

perature of the products of

combustion as they leave the

calorimeter are given by the

thermometers T" and T'". A
stream of water flows from the

supply pipe D into a small

reservoir kept at constant

level by means of the overflow

pipe 0. From this regulator

the water passes down the

tube U through the control

valve V, thence through the

water jacket B, thence through

Cf- and the discharge nozzle

IT into the measuring vessel

U. The temperatures of the

water as it enters and as it

leaves the calorimeter are

given by the thermometers T'

and T. Water vapor formed by the combustion of the gas
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condenses on the inside of the combustion chamber and escapes

through the outlet J into the measuring vessel TF.

The flow of water and of gas is so adjusted that the tempera-

ture of the products of combustion escaping at Y is approxi-

mately the same as the temperature of the gas entering the

burner at P.

Let V represent the volume (reduced to standard conditions)

of the gas burned during a certain time. Let the mass of

water which passes through the calorimeter during this time be

denoted by «z„, and let its temperatures on entering and on

leaving be represented by t' and t respectively. Let the mass

of steam condensed during the combustion be represented by

m„ and let the temperature at which it condenses and the tem-

perature of the condensed steam as it leaves the calorimeter be

denoted by t^ and t^ respectively.

Then the heat value of the gas S is given by the equation

V

where h is the heat equivalent of vaporization of water. If m„
and Trig are measured in grams, v in liters, and temperatures in

degrees centigrade, then S is given in gram calories per liter

or kilogram calories per cubic meter.

Manipulation and Computation. — After assembling the

apparatus, connect D to the water supply so that any leak in the

calorimeter will make itself evident. The flow of water into the

apparatus must always be sufficiently great to overflow through

the pipe 0. With gas valve at the burnerP closed, connect the

gas regulator to the gas supply and notice whether the index of

the meter moves. If it does, seek out the leak and remedy it.

With the water still flowing through the apparatus, take the

burner out of the calorimeter, light the gas, and replace the

burner. If the gas is lighted while the burner is inside the com-

bustion chamber, there is danger of an explosion. Have the top

of the burner from 12 to 15 cm. above the lower opening to the

combustion chamber. The damper Z should be from one half
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to completely open, depending upon the draught required for

the flame.

Arrange the flow of water by means of the valve V and the

flow of gas by means of the valve P so that the thermometers

T" and T'" indicate practically the same temperature. For

ordinary illuminating gas the proper rate of flow of water is

from 1.0 to 1.5 liters per minute.

After all of the thermometers indicate nearly stationary tem-

peratures, note simultaneously the gas meter reading and the

temperatures indicated by the thermometers T&nd T' . Then
immediately place suitable vessels U and W so as to catch the

warmed water escaping from 5" and the condensed steam escap-

ing from J. Note the temperatures of the ingoing and the out-

going water every 15 seconds until two or more liters of water

have flowed into the vessel U. Then remove the vessels Cand
TTand at the same time take the gas meter reading. Note the

temperature % of the condensed steam in W. Determine »i„

and m^ by weighing.

From the difference between the two gas meter readings to-

gether with the temperature and pressure of the gas passing to

the burner, the value of v is found by means of the fundamental

law of gases. The temperature is given by the thermometer

T" . The pressure is the sum of the barometric reading and

the height of mercury corresponding to the difference in the

levels of water in the manometer V.

All of the data are now at hand for substitution in (238.)

By substituting a properly designed lamp for the gas burner,

Junker's calorimeter can be used for finding the heat value

of a liquid.



CHAPTER XV

THERMODYNAMICS

It is found that whenever TF units of mechanical energy are

entirely used in producing heat, the amount of heat produced is

always the same, being independent of the particular way in

which the energy is used to produce the heat ; that whenever

H units of heat are entirely used in producing mechanical

energy the amount of mechanical energy produced is always the

same, being independent of the particular way in which heat

is used to produce the energy ; and that if W units of mechan-

ical energy produce H units of heat, H units of heat produce

W units of mechanical energy. These three facts may all be

indicated by the one equation

W= JH, (239)

in which J represents the number of units of mechanical energy

that are required to produce one unit of heat. This J" is given

the name mechanical equivalent of heat. Its value depends only

upon the units in terms of which the mechanical energy and the

heat are measured.

Exp. 56. Determination of the Mechanical Equivalent of Heat

by Rowland's Method

Object and Theory of Experiment.— One method of de-

termining the mechanical equivalent of heat is to measure the

amount of heat developed when a given amount of mechanical

energy is used to stir water vigorously. In the apparatus used

by Joule and improved by Rowland this stirring is done in the

247
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J^^^>

inner vessel (Fig. 110) of a calorimeter. From the inner

walls of this vessel pro-

ject vanesW between

which the paddles JPP
have just room to turn.

These paddles are fas-

tened to a piece of brass

tubing that carries at its

upper end a disk which

is driven by the belt

from the small motor

seen at the right. The
vessel O is supported

below on a point with

very little friction and

on top carries a disk

D. Around this disk

is lapped a cord which

passes over a pulley P
and carries at its end a

mass M. If there were

nothing to prevent it,

the weight of M would

cause G to turn until a projection on D came against one of two

stops between which it plays. But the motion of the paddles

PP throws water against the vanes F'F' so rapidly that when
the adjustments have been properly made O remains nearly at

rest, the projection on D playing between the two stops.

LetM denote the mass of M and d the diameter of D. Then

Mff X ^dis the torque that iHf exerts in keeping from turning

with the paddles. When the paddles have turned n times they

have turned through an angle of 2 irn radians. From the propo-

sition in elementary dynamics which states that the work done

by a rotating body is measured by the product of its rota-

tion in radians and the torque which opposes that rotation,

we have then

Fig. 110.
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W= irnMgd, (240)

where W denotes the mechanical energy used in stirring the

water.

Let TO denote the mass of water in the calorimeter ; e, the

water equivalent of the vessel C, the paddles, and the immersed

part of the thermometer ; tj, the initial temperature of the water

in the calorimeter; t^, its temperature after the paddles have

made n turns, and R the net amount of heat lost from C by

radiation. Then from (206),

n=.(m + eXh - «i) + ^> (241)

where H denotes the amount of heat developed by the churning

of the water.

From (239), (240), and (241) we have then

J = nrnMgd
^242)\m + e)(t^—t^)+-R'

Manipulation and Computation.— In order to deter-

mine the radiation correction R it is necessary to know how
the readings of the two thermometers compare. Adjust the

Beckmann thermometer as directed on p. 160, and suspend

both thermometers in a bath of water near the temperature of

the room. Stir the water occasionally, and after a time record

the reading of each thermometer. Meantime take the diameter

of D with a caliper and meter stick, see that the pulley P runs

easily, and be sure that the vessel and the paddles are dry

and weigh them together. Then fill to within a few milli-

meters of the top with water at a temperature some 3° or 4° below

the temperature of the room, and weigh again. Assemble the

apparatus, set the motor running, and by means of the screw A
move the motor until the tension of the belt is such as to keep

the projection on I) playing about halfway between its stops.

At some chosen instant read the thermometer T and imme-

diately thereafter the speed counter 8. For some ten or fifteen

minutes after that instant read Tand T-^^ every minute—always
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reading one of them half a minute after the other. At the end

of this time open the switch that supplies power to the motor,

note the reading of the speed counter, and continue reading the

thermometers for five or ten minutes. During this time the

water in the calorimeter ought to be kept stirred. This can be

done by turning the paddles steadily and very slowly by hand.

The paddles must not be turned faster than about one revolu-

tion in two minutes.

On the same sheet plot two curves coordinating temperature

and time— one for the therinomter 2'and the other for T^— and

by Regnault's metjiod determine B. In finding n note that

the speed counter reads 1 for every four turns of the paddles.

Determine Mhy weighing and e by (210).

Without throwing out the water or repeating the weighings

make three determinations and find the mean.
y

Exp. 57. Determination of the Mechanical Equivalent of Heat

with Barnes's Constant Flow Current Calorimeter

Object and Theory op Experiment. — In text-books on

General Physics it is

shown that when a

steady electric current

of /amperes flows from

one to the other of two

points between which

there is a potential dif-

ference of F" volts, in t

seconds there is trans-

formed between those

two points from elec-

tric energy into heat

the amount of energy

FiQ. m.

W= IVt joules =
in 107 ergs. (243)
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If the. current, the potential difference, the time, and the heat

produced can be accurately measured, (243) suggests a method
of determining the mechanical equivalent of heat.

In this experiment the electric current flows through a wire

coiled inside of a glass tube B^B^ (Fig. 111). Through this

same tube is a steady flow of water. The heat developed by

the electric current warms the water during its passage through

the tube so that the thermometer 7j indicates a higher tempera-

ture than T^- If m grams of water escape in t seconds, and

during the passage through the tube are raised from tempera-

ture T^ to temperature T^, the amount of heat developed in the

wire during the same t seconds is, by (206),

H= m{T^ - T^} calories. (244)

On substituting in (239) the values of W and E from (243)

and (244) we obtain

J = —— ergs per calorie. (245)
»w(ij — ij)

Since the temperatures F^ and T^ are practically steady dur-

ing the time observations are being taken there are no correc-

tions for the thermal capacity of wire, glass tube, thermometers,

nor anything else. With a good flow of water and the mean
of the temperatures of the inflowing and outflowing water

within 5° C. of the room temperature the heat losses by conduc-

tion and radiation are negligible.

Manipulation and Computation. — The rate at which

water flows is kept

constant by a small

reservoir inside a

larger jacket shown

at the top of Fig.

111. The water sup-

ply is so arranged

that water is always

overflowing gently from the small reservoir, and the head of

water is therefore kept constant.

FiQ. 112.
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After the apparatus is set up as shown in Fig. Ill and the

water is started, the electric connections are to be made as in-

dicated in Fig. 112. B^ and B^ are the binding posts shown in

Fig. Ill, and Wis the wire inside the glass tube. Fis a volt-

meter, A an ammeter, R a rheostat, and UH' the terminals of

an electric circuit. In connecting the ammeter and voltmeter

care must be taken that the positive wire is connected to the

side marked -f- . If it is not known which terminal is positive,

one wire may be connected and then the other flicked quickly

across the other terminal.

After making the electric connections and adjusting the flow of

water and the electric current to suitable values, open the switch

in the electric circuit. After a few minutes, when the readings

of the thermometers have become steady, record their readings

every minute for four or five minutes. Make all thermometer

readings to hundredths of a degree. Close the switch, and when

the thermometers have again become steady, put under the out-

let a weighed vessel and at the same instant start a stop watch.

After fifteen seconds read the voltmeter, af cer fifteen more the

ammeter, after fifteen more on© thermometer, and after fifteen

more the other thermometer. Continue taking readings in the

same order every fifteen seconds for five or ten minutes. At

the end of this time remove the vessel from under the outlet and

at the same instant stop the watch. Find the mass of the water

that flowed through. To get (^x — T^), subtract the difference

between the averages of the temperatures indicated by the two

thermometers before the electric current was turned on from

the difference between their average readings while the current

was flowing.

Take five sets of observations for different rates of flow of

water and different values of electric current.
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TABLE 1. — Conversion Factors

Length

1 centimeter
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Stress

1 dyne per sq. cm.

= 0.067197 poundal per sq. ft.

1 g. wt. per sq. cm.

= 2.0482 lb. wt. per sq. ft.

1 cm. of mercury at 0° C.

= 13.596 g. wt. per sq. cm.

= 0.19338 lb. wt. per sq. in.

1 poundal per sq. ft.

= 14.8816 dynes per sq. cm.

1 lb. wt. per sq. ft.

= 0.48824 g. wt. per sq. cm.

1 in. of mercury at 0° C.

= 34.533 g. wt. per sq. cm.

= 0.49117 lb. wt. per sq. in.

1 erg = 2.3731 x lO"" ft. poundals

1 joule = 10' ergs

= 23.731 ft. poundals

Ig.ctn. = 7.233 x 10-5 ft. lb.

Work or Energy

1 ft. poundal = 421390 ergs

1 ft. lb. = 13825.5 g. cm.
= 1.35485 joules

1 H. P. hour = 2685600 joules

Power

1 watt = 10' ergs per sec.

= 23.731 ft. poundals per sec.

= 44.23 ft. pounds per min.

1 force de oheval

= 75 Kg. m. per sec.

= 0.9863 horse power

1 ft. poundal per sec.

= 421390 ergs per sec.

1 ft. lb. per min.

= 0.13825 Kg. m. per min.

1 horse power = 745.96 watts

= 1.0139 force de cheval

Thermometric Scales

C = f(F-32)
I

J? = f C+32

Unit Quantity of Heat

1 g. calorie = 0.0039683 B. T. U. | 1 B. T. U. = 252.00 g. calories

Mechanical Equivalent or Heat *

1 g. calorie = 4.19 joules

= 426.9 Kg. m.

= 1400.6 ft. lb.

1 B. T. U. = 1055 joules

= 778.1 ft. lb.

Logarithms

logio ^ = 0.43429 loge N
\

log^ N= 2.3026 log,„ iV

* Computed with the value of g at Greenwich.
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TABLE 2.— Densities of Solids and Liquids

Since density varies with the temperature and with the specimen, these numbers

are to be regarded as approximations only.

Substance

Aluminium
NH^Cl . .

Antimony

.

Asbestos

Asphalt .

Beeswax

.

Benzene .

Bismuth .

Brass . .

Brick

Bronze .

CaClj . .

CS2 at 20°

Chalk . .

Coal

Copper ....
CuSO,
Cork
Diamond ...
Ether at 0° C.
German Silver

Glass

Glycerin . .

Gold, pure

Granite . .

Graphite .

Ice at 0" C.

cast

Iron
pure . .

steel . .

wrought

Ivory . . . ,

Lead (cast)

Grams
PER c.c.

2.7

1.52

6.71

<2.0

J 2.8

51.0

J
1.8

0.96

0.70

9.80

(7.7

I 8.7

51.6

I 2.1

8.6

2.2

1.264

(1.8
12.8
(1.2

1 1.8

8.92

2.27

0.24

3.52

0.736

8.62

^2.5

J
3.9

1.26

19.32

(2.5

I 3.0

2.8

0^9167

(7.0

I7.7
7.86

57.6
/7.8
(7.79

17.85
(1.83
)1.92
11.34

Lbs. per

OU. FT.

170
95

419
125
175
62

110
,

60
44

612
480
540
100
130
540
140
78.9

110
175
75
110
557
142
15

220
45.9

538
150
250
79

1206
150
190
140
57.22

440
480
491
470
490
486
490
114
120
708

Substance

Lime

Limestone . . .

Marble

Mica

Mercury at 0° C.

Nickel
Oil, Linseed . . .

Oil, Olive . : . .

ParaiBn

Phosphorus
Platinum .

Porcelain .

KjC^rO, . . .

Quartz . . .

Resin ....

Sandstone .

Shellac

Silver
pure ,

mint
Slate

Soapstone j . . .

Solder (soft)- . .

NaCl
Sulphur, rhombic
Tin
Turpentine . . .

Vulcanite ....
Water at 4° C. .

ash . . .

cherry .

oak . . .

Woods
sea-

soned

Zinc .

ZnSO,

pme. .

poplar
.walnut

Grams
PER c.c.

52.3
?3.2

J
2.5

J
3.0

j2.6
12.8
(2.6

J
2.9

13.596

8.90

0.94

0.91

(0.87

jO.93
1.83

21.5

2.4

2.72

2.70

2.65

1.07

(2.2

(2.5
(1.1

U.2
10.53

10.3S

2.7

2.7

8.9

2.15

2.07

7.29

0.87

1.22

1.000013
0.75

0.67

(0.7
jl.O
0.5

0.4

0.7

7.15

2.0

Lbs. FEB

CU. FT,

140
200
150
190
160
175
160
180
848.7

556
59
57

54
58

114
1340
1.50

170
169
165
67

140
150
70
75
657
648
170
170
555
134
129
455
54
76

62.4252

47
42
45
62

31
25
45

446
125
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TABLE 3.— Specific Gravity of Water at Different Temperatures

Referred to Water at 4° C.

°c.
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TABLE 5.— Specific Gravities of Aqueous Solutions at 15°

Referred to Water at 4° C.

c.
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TABLE 7.— Specific Gravities of Gases and Vapors

Referred to Water at 4° C; also to Air and Hydrogen at 0° C. and 760

mm. of mercury pressure.

All results are given for a pressure of 760 mm. of mercury.
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TABLE 8.— Coefficients of Friction

Substance
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TABLE 10.— Viscosities of Liquids

17 denotes the coefficient of viscosity in c.g.s. units, ssq, S20i ^tc, the specific viscosity, or

viscosity relative to water at 0° C, 20° C, etc,

(a) Water at Different Temperatures

Temp.
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TABLE 11. — Corrections for the Influence of Gravity on the

Height of the Barometer

(a) Reduction to Latitude 45°

From 0° to 45° the corrections are subtractive ; from 45° to 90° the correc-

tions are additive.
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TABLE 12, — Boiling Point of Water under Different

Barometric Pressures

(a) Temperatures in Degrees Centigrade and Pressures in Millimeters of

Mercury

°c.
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TABLE 13.— Pressure of Saturated Aqueous Vapor

In millimeters of mercury

°c.
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TABLE 15.— The Wet and Dry Bulb Hygrometer
From Smithsonian Tables

Let the temperature of the atmosphere given by a dry bulb thermometer

be denoted by f C, and let the reading of a wet bulb thermometer be de-

noted by (t-M). In the following table, corresponding to the various

values of M given in the top line, we have given the pressure (in mm. of

mercury) of the aqueous vapor in the atmosphere at the temperature t° C,
i.e. the pressure that would be exerted by the aqueous vapor in the atmos-

phere if the temperature were reduced to the dew point.
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TABLE 16.— CoeflScients of Linear Expansion of Solids

Substance
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TABLE 19.— Specific Heats of Solids and Liquids

Unless otherwise stated, the following values express the mean specific

heats from 0° to 100° C.

SUUBTANCE
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TABLE 21. — Boiling Points and Heat Equivalents of

Vaporization

Substance
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TABLE 23.— The Greek Alphabet

Letteu
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Absorbing power, 215.

Acceleration, 63, 66, 69.

Accuracy required, 6.

Air thermometer, 188.

Alcoholimeter, 103.

Angle, 42.

Approximations, table of, 7.

Area, 54.

August's psychroraeter, 206.

Balance, analytic, 25.

Jolly-Linebarger, 97.

Mohr-Westphal, 99.

Balancing columns, metboii of, 183.

Ballistic pendulum, 64.

Barnes's current calorimeter, 250.

Barometer, 53, 176, 262.

Baume'a hydrometer scale, 258.

Bearings and journal, friction between, 80, 82.

Beck's hydrometer scale, 258.

Beckmann thermometer, 159.

Belt and pulley, friction between, 77.

Boiling point of a solution, 173.

Boiling point tables, 263, 268.

Borda's method of coincidences, 67.

Breaking stress, 119, 260.

Brittleness, 120.

Bulk modulus, 119.

Bullet, speed of, 64.

Bunsen's effusiometer, 107.

Calibration of an hydrometer, 102

a thermometer, 160, 166.

standard masses, 86.

Caliper, 17, 21.

Calorimetry, 207.

Cartier's hydrometer scale, 258.

Cathetometer, 22.

Center of percussion, 65.

Chronograph, 33.

Chronometer, 33.

Clock, 33, 34.

Coefficient of elasticity, 118.

of expansion , 176, 266.

Coefficient of expansion— Continued.

of air, 188.

of a rod, 179.

of glass, 186.

of mercury, 183.

of friction, 75, 260.

of restitution , 64.

of viscosity, 143.

Coincidences, method of, 39, 68, 72.

Cold test of an oil, 170.

Combustion bomb, 237.

Compound pendulum, 69.

Concentration and boiling point, relation

between, 173.

Constant errors, 3.

Constants, number to keep in empirical

formula, 11.

Conversion factors, 254.

Cooling, law of, 209.

Correction, 4.

Correction factor of a planimeter, 54.

Coulomb's method for viscosity, 148.

Cubical expansion, 176, 256.

Current calorimeter, 250.

Damping constant, 148.

Daniell's hygrometer, 203.

Datum circle of planimeter, 59.

Densimeter, 103.

Density, 88, 256.

by immersion, 95.

by measurement and weighing, 89.

of an unsaturated vapor, 198.

with Jolly balance, 97.

with Mohr-Westphal balance, 99.

with pyknometer, 90, 92.

Depressed zero, 157.

Determinate errors, 3.

Dew point, 203.

Differences of various orders, 12.

Dilatometer, 186.

Direct measurements, 1.

Distance measurements, 16, 42.

Divided circle, eccentricity in mounting, 61.
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DWiding engine, 18.

Dynamometer, oil testing, 80, 82.

Eccentricity in mounting of circle, 61.

Eifusiometer, 107.

Elasticity, 118, 260.

Elongations, method of middle, 38.

Emissivity, 215, 268.

Empirical equations, 10, 124.

Errors, 2.

Expansion, 176, 266. See also Coefficient

of expansion.

Exposed stem correction, 158.

Eye and ear method, 35.

Eyepiece micrometer, 20.

Filar micrometer microscope, 19.

Fire test of an oil, 170.

Flash and stop watch method, 36.

Flashpoint of an oil, 170.

Fly wheel, change of speed, 63.

Friction, 75, 260.

Gases, fundamental law of, 176.

Golden's oil-testing dynamometer, 80.

Gravity, acceleration due to, 66, 69.

specific. See Specific gravity.

Greek alphabet, 209.

Heat equivalent, 208.

of fusion, 231, 267.

of vaporization, 235, 268.

Heat value of coal, 237, 266.

of gas, 243, 266.

Hempel's combustion bomb, 238.

Humidity, 202.

Hydrometer, 102, 258.

Hygrometry, 202.

Hypsometer, 164.

Immersion, specific gravity by, 95.

Indeterminate errors, 3.

Indirect measurements, 1.

Inertia, moment of, 110.

Jolly's air thermometer, 188.

spring balance, 97.

Joly's steam calorimeter, 229.

Joule's method for mechanical equivalent

of heat, 247.

Journal and bearing, friction between,

80, 82.

Junker's calorimeter, 243.

Latent heat, 208.

Law of cooling, 209.

Least count of a vernier, 21.

Length, 16, 42.

Level trier, 49.

Lever, optical, 42,47.

Limit of elasticity, 118.

Linear expansion, 176, 179, 266.

Linebarger's spring balance, 97.

Logarithms, accuracy, 6.

Lubricated journal, friction at, 80, 82.

Mass, 25, 86.

Maximum elongation, 38.

Mechanical equivalent of heat, 247.

Melting point table, 267.

Mercury vapor pressure, 264.

Meter bridge, 168.

Meter stick, 16.

Meyer's method for vapor density, 198.

Micrometer, 16-20.

Middle elongations, method of, 38.

Mixture, method of, 221.

Modulus of elasticity, 119, 260.

of resilience, 140, 260.

Mohr-Westplial balance, 99.

Moment of inertia, 110.

Miiller's optical lever, 179.

Newton's law of cooling, 209.

New York Board of Health tester, 171.

Notation, 15.

Oil, test of, 148, 170.

Oil testing machine, 80, 82.

Omitted transits, method of, 35.

Optical lever, 42, 47.

Oscillation, 34.

Parallax, 2, 156.

Passages, method of, 36.

Pendulum, ballistic, 64.

compound, 69.

seconds, 33.

simple, 66.

Percussion, center of, 65.

Period of oscillation and vibration, 34.

Permanent set, 118.

Planimeter, 54.

Plotting, 9, 13.

Poiseuille's method for viscosity, 143.

Pressure, temperature coefficient of, 188.

Projectile, speed of, 64.

Psychrometry, 202.
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Pulley, correction for friction of, 76.

Pulley and belt, friction between, 77.

Pyknometer, 90.

Pyrometers, 156.

Qualitative experiments, 1.

Quantitative experiments, 1.

Radiating power, 215.

Badiation, constant, 210.

correction for, 209.

Radius of spherical surface, 45.

of spirit level, 49.

Regnault's method of correcting for radi-

ation, 209.

Regnault's method for vapor pressure,

197.

Resilience, 140, 260.

Resistance thermometer, 166.

Restitution, coefficient of, 64.

Results, methods of expressing, 8.

Rider, of a balance, 26.

Rigidity, 119, 134, 137, 260.

Rowland's method of correcting for radi-

ation, 212.

Rowland's method for mechanical equiva-

lent of heat, 247.

Rumford's method of correcting for radi-

ation, 214.

Salinimeter, 103.

Seconds pendulum, 33.

Sensibility of a balance, 28.

Sensitiveness of a spirit level, 49.

Series, summing, 15.

Set, 118.

Shear, 119.

Simple pendulum, 66.

Simple rigidity, 119, 134, 137, 260.

Slide modulus, 119.

Slide rule, accuracy, 6.

Slide wire bridge, 168.

Solution, boiling point of, 173.

Specific gravity, 88, 256-259.

by immersion, 95.

with effusiometer, 107.

with Jolly balance, 97.

with Mohr-Westphal balance, 99.

with pyknometer, 90, 92.

Specific heat, 207, 267.

by cooling, 219.

by mixture, 221.

with stationary temperature, 226.

with steam calorimeter, 229.

Speed, 63, 04.

Spherometer, 17, 45.

Spirit level, sensitiveness, 49.

Standard masses, calibration of, 86.

Stem exposure correction, 158.

Stop watch, 33.

Strain, 118.

Stress, 118.

Summation notation, 15.

Telescope, adjustment, 44.

Temperature, 155.

Tenacity, 119.

Tensile coefficient of elasticity, 119, 120,

128, 2C0.

Thermodynamics, 247.

Thermometer, air, 188.

calibration, 100, 166.

errors, 156.

resistance, 166.

Thickness of a thin plate, 42.

Thurston's oil testing machine, 83.

Time, 32.

Transits, method of omitted, 35.

Trustworthy figures, 4.

Twaddell's hydrometer scale, 258.

Ultimate resilience, 140.

Vapors, 194, 264.

Variable errors, 3.

Velocity, 63.

Verification of a barometer scale, 53.

Vernier, 20.

Vibration, 34.

Vibrations, method of, 26.

Viscosity, 143, 148, 261.

Watch, 33, 34.

Water equivalent, 208, 224.

Water vapor pressure, 194, 196, 264.

Weighing, 25.

errors, 30.

precautions, 32.

Weight dilatometer, 186.

Wet and dry bulb hygrometer, 205, 265.

Wheatstone bridge, 168.

Young's modulus, 119, 120, 128, 260.

Zero circle of planimeter, 59.

point of balance, 26.

reading of caliper, 17.












